Chapter 63 Headaches in Infants and Children
Epidemiology
Headaches are common during childhood and become increasing more frequent during adolescence. The prevalence of headache ranges from 37 to 51 percent in 7-year-olds, gradually rising to 57–82 percent by age 15. Recurring or frequent headaches occurred in 2.5 percent of 7-year-olds and 15 percent of 15-year-olds [Bille, 1962]. Before puberty, boys are affected more frequently than girls, but after puberty, headaches occur more frequently in girls [Deubner, 1977; Sillanpaa, 1983; Dalsgaard-Nielsen, 1970; Laurell et al., 2004].
The prevalence of migraine headache steadily increases through childhood and the male:female ratio shifts during adolescence. The prevalence rises from 3 percent at age 3–7 years to 4–11 percent by age 7–11, and up to 8–23 percent during adolescence (Table 63-1). The mean age of onset of migraine is 7.2 years for boys and 10.9 years for girls [Dalsgaard-Nielsen, 1970; Lipton et al., 1994; Mortimer et al., 1992; Valquist, 1955; Small and Waters, 1974; Sillanpaa, 1976; Stewart et al., 1991; Stewart et al., 1992].
Data regarding tension-type headache is limited. Two studies including school-aged children of 7–19 years, and using the International Classification of Headache Disorders (ICHD-2) criteria, found the 1-year prevalence of tension-type headache to be 10–23 percent. The prevalence of tension-type headache increased with age in both boys and girls, up to age 11 years, and thereafter only increased in girls [Laurell et al., 2004; Zwart et al., 2004].
Chronic daily headache, defined as more than 15 headache days/month for more than 4 months, occurs in 1–2 percent of adolescents [Wang et al., 2006, 2009].
Classification
The International Headache Society’s comprehensive classification system for the spectrum of primary and secondary headache disorders is available on their website (http://ihs-classification.org/en) (Box 63-1). There are three major categories: the primary headaches, the secondary headaches, and the cranial neuralgias. Each headache category is carefully defined, subclassified, and annotated.
Box 63-1 International Classification of Headache Disorders (ICHD-2)
For example, the classification for the primary headache disorder, migraine, is subclassified into migraine without aura, migraine with aura, and the childhood periodic syndromes that are commonly precursors of migraine. Migraine with aura is further divided into subgroups based upon current views of the pathophysiology of migraine. The visual, sensory, motor, or psychic phenomena that herald the onset of a migraine attack are all included under migraine with aura (Box 63-2). A migraine attack accompanied by hemiparesis (e.g., familial hemiplegic migraine [FHM]) falls in the category of migraine with aura, although alternative explanations for hemiparesis with headache must be carefully sought before the diagnosis of FHM can be accepted.
Box 63-2 2003 International Classification of Headache Disorders (ICHD-2): Migraine
Alternating hemiparesis of childhood (AHC) is a rare and bizarre entity, once thought to be a migrainous phenomenon. AHC is now viewed as a metabolic disorder, probably due to a mitochondrial disorder or a channelopathy. Recently, however, a novel ATP1A2 mutation within one kindred, with features that bridged the phenotypic spectrum between AHC and FHM, has been reported and may draw AHC back into the migraine spectrum [Swoboda et al., 2004; Bassi et al., 2004].
Clinical Classification
A useful clinical classification system was proposed by Rothner; it divides headache into five temporal patterns (Figure 63-1): acute, acute recurrent, chronic progressive, chronic nonprogressive, and mixed. Each of these temporal patterns suggests differing pathophysiologic processes and has distinctive differential diagnoses (Box 63-3).
Box 63-3 Differential Diagnosis of the Five Temporal Patterns
Diagnostic Criteria
The ICHD-2 established the diagnostic criteria for the primary headache disorders, incorporating many developmentally sensitive changes compared to previous criteria, and thus improving applicability to children and adolescents while maintaining specificity and improving sensitivity (Box 63-4) [Oleson, 2004]. For example, the criteria accept that pediatric migraine may be brief (approximately 1 hour), as opposed to a 4-hour duration for adults; may be bifrontal in location (under age 15 years); and may have associated symptoms of photophobia and phonophobia, which may be inferred by the child’s behavior, such as withdrawing to a dark, quiet room to rest during the headache attack.
Box 63-4 ICHD-2 Diagnostic Criteria for the Primary Headache Disorders: Migraine and Tension-Type
Pediatric Migraine without Aura
ICHD-2 also includes criteria for cyclical vomiting and abdominal migraine (Box 63-5 and Box 63-6).
Box 63-5 ICHD-2 Criteria for Cyclical Vomiting Syndrome
Description
Box 63-6 ICHD-2 Criteria for Abdominal Migraine
Description
Evaluation of the Child with Headache
The evaluation of a child with headaches follows the traditional medical model and begins with a thorough medical history and complete physical and neurologic examination. The brief series of questions shown in Figure 63-2 provides a logical framework for evaluating headaches and generally yields sufficient information to diagnose most primary headaches and reveal clues to presence of secondary headache disorders.
Fig. 63-2 Key questions to ask in the evaluation of children with headaches.
(Adapted from Rothner AD. The evaluation of headaches in children and adolescents. Seminars in Pediatric Neurology 1995; 2:109–118.) [Rothner, 1995]
The role of ancillary diagnostic studies, such as laboratory testing, electroencephalography (EEG), and neuroimaging, has been extensively reviewed [Lewis et al., 2002]. This American Academy of Neurology (AAN) Practice Parameter determined that there is inadequate documentation in the literature to support any recommendation as to the appropriateness of routine laboratory studies (e.g., hematology or chemistry panels) or performance of lumbar puncture. Routine EEG is not recommended as part of the headache evaluation. Data compiled from eight studies showed that the EEG was not necessary for differentiation of primary headache disorders (e.g., migraine, tension-type) from secondary headache due to structural disease involving the head and neck, or from headaches due to a psychogenic etiology. In addition, EEG is unlikely to define or determine an etiology of the headache or to distinguish migraine from other types of headaches. Furthermore, in those children undergoing evaluation for recurrent headache who were found to have paroxysmal EEGs, the risk of future seizures is negligible.
Primary Headache Syndromes
Migraine
Migraine is the most common acute recurrent headache syndrome. The classification of migraine is shown in Box 63-2 and the cardinal diagnostic features are shown in Box 63-4.
Pathophysiology
Incompletely understood, migraine is thought to be a complex, primary, neuroglial process (Figure 63-3) [Pietrobon and Striessnig, 2003; Silberstein, 2004; Goadsby et al., 2009]. The principal underlying phenomenon of migraine is hyperexcitable neurons. Polygenic influences produce disturbances of neuronal ion channels (e.g., sodium, calcium), leading to episodes of cortical spreading depression (CSD) and activation of the “trigeminovascular system.”
Fig. 63-3 Migraine pathophysiology.
(Adapted from Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev 2003;4:386.)
Neurogenic inflammation alone may be an insufficient explanation for the severity and quality of pain in migraine. One of the striking symptoms experienced during an attack of migraine is that seemingly innocuous activities, such as coughing, walking up stairs, or bending over, greatly intensify the pain. This observation, coupled with elegant research, has led to the concepts of “sensitization” of trigeminal vascular afferents, whereby both peripheral and central afferent circuits become exceptionally sensitive to mechanical, thermal, and chemical stimuli. These circuits become so sensitive that virtually any stimulation is perceived as painful: the concept of “allodynia” [Burstein et al., 2000, 2004; Burstein and Jakubowski, 2004].
Clinical Manifestations
Migraine without aura
The diagnostic criteria for migraine without aura are shown in Box 63-4.
Migraine headaches typically last for hours, even days (1–72 hours), but do not, generally, occur more frequently than 6–8 times per month. More than 8–10 attacks per month must warrant consideration of alternative diagnoses, such as organic conditions (i.e., idiopathic intracranial hypertension) or the spectrum of chronic daily headache [Gladstein et al., 1997; American College of Emergency Physicians, 1996].
Migraine with aura
Approximately 14–30 percent of children will report visual disturbances, distortions, or obscuration before or as the headache begins (Box 63-7) [Lewis, 1995]. The aura (“cool breeze”) is, however, an inconsistent feature in childhood and adolescents. The presence of an aura must be elicited with very specific questions: “Do you have spots, colors, lights, dots in your eyes before or as you are getting a headache?”
Basilar-Type Migraine
Also known as basilar artery or vertebrobasilar migraine, this clinical entity is the most common of migraine variants and is estimated to represent 3–19 percent of all migraine [Bickerstaff, 1961; Lapkin and Golden, 1978; Golden and French, 1975]. This wide range of frequency relates to the rigorousness of the definition. Some authors consider any headache with dizziness to be within the spectrum of basilar-type migraine (BTM), whereas others require the presence of clear signs and symptoms of posterior fossa involvement before establishing this diagnosis. The ICHD-2 criteria require two or more symptoms and emphasize bulbar and bilateral sensorimotor features (Box 63-8).
Vertigo | 73% |
Nausea or vomiting | 30–50% |
Ataxia | 43–50% |
Visual field deficits | 43% |
Diplopia | 30% |
Tinnitus | 13% |
Vertigo | 73% |
Hearing loss | * |
Confusion | 20% |
Dysarthria | * |
Weakness (hemiplegia, quadriplegia, diplegia) | 20% |
Syncope | * |
The pathogenesis of BTM is not well understood. While focal cortical processes, oligemia, or depolarization can explain the deficits in hemiplegic migraine, the posterior fossa signs of BTM are more problematic. A single case report of a 25-year-old woman with BTM exists, wherein transcranial Doppler and single-photon emission computed tomography (SPECT) were performed through the course of a BTM attack. These data suggest decreased posterior cerebral artery perfusion through the aura phase at a time when the patient described was experiencing transient bilateral blindness and ataxia [La Spina et al., 1997].
Hemiplegic Migraine
Familial Hemiplegic Migraine
FHM is an uncommon autosomal-dominant form of migraine headache, in which the aura has a “stroke-like” quality, producing some degree of hemiparesis. The nosology is somewhat misleading since there is actually a wide diversity of focal symptoms and signs that can accompany this migraine variant, beyond motor deficits. Barlow proposed the more appropriate term “hemi-syndrome migraine” to emphasize the diversity of associated symptoms, but this was not adopted [Barlow, 1984]. ICHD-2 clearly requires that “some degree of hemiparesis” must be present.