CHAPTER 233 Peripheral Neuropathies
Peripheral neuropathies are conditions that affect peripheral nerve axons, their myelin sheaths, or both and produce a variety of signs and symptoms. As with arthritis or anemia, a diagnosis of peripheral neuropathy is relatively meaningless because dozens of conditions could be responsible. Greater precision is required to have any clinical usefulness. Clinical evaluation attempts to place a peripheral neuropathy into one of several categories that have pathophysiologic, etiologic, and therapeutic significance. The process may be generalized, focal, or multifocal; axonal or demyelinating; motor, sensory, or mixed; with or without autonomic dysfunction; acute or chronic; progressive, stable, or resolving; and hereditary or acquired. Generalized peripheral neuropathy is often referred to as polyneuropathy and focal neuropathy as mononeuropathy. A condition that affects more than one nerve but not all the nerves is referred to as multiple mononeuropathy or mononeuropathy multiplex. This chapter discusses generalized polyneuropathies; focal neuropathies are discussed elsewhere. Table 233-1 lists some of the major and most common causes of generalized peripheral nerve disease but is far from exhaustive. A recent major textbook lists more than 100 causes of peripheral neuropathy.1
INFLAMMATORY DEMYELINATING NEUROPATHY |
INFECTIOUS AND GRANULOMATOUS NEUROPATHY |
NEUROPATHY ASSOCIATED WITH SYSTEMIC DISEASE |
ISCHEMIC NEUROPATHY |
METABOLIC NEUROPATHY |
HEREDITARY NEUROPATHY |
TOXINS |
AIDP, acute inflammatory demyelinating polyradiculoneuropathy; CIDP, chronic inflammatory demyelinating polyradiculoneuropathy; HIV, human immunodeficiency virus; HMSN, hereditary motor-sensory neuropathy; HSAN, hereditary sensory-autonomic neuropathy.
Clinical Signs and Symptoms of Peripheral Neuropathy
Quantitation of the degree of deficit is useful for longitudinal follow-up. Sophisticated instrumentation is available for this purpose but is expensive and not in wide use outside academic centers. Simple bedside testing can provide a great deal of useful information. Strength is most often described according to the Medical Research Council scale. The power in small hand muscles can be nicely described with techniques that compare the patient’s strength with the examiner’s.2 Two-point discrimination is quantitative and easily performed. Inexpensive handheld esthesiometers can quantitate touch sensibility. Vibratory sensation is a sensitive parameter of peripheral nerve function and can be simply quantitated by noting where the patient can perceive the sensation and for how long (e.g., “vibration absent at the great toes and metatarsal heads, can perceive a maximally vibrating 128-Hz fork for 5 seconds over the medial malleoli”). If the patient returns and is found to have lost vibration sensibility over the malleoli, the condition is progressing. If on follow-up vibration sensation is present for 12 seconds over the malleoli and can now be perceived for 3 seconds over the metatarsal heads, the patient is improving. Functional testing is invaluable. The time required to walk a set distance or get up from the floor, arm and leg outstretch time, the ability to support the entire body weight on one tiptoe, and similar functions are objective and quantifiable.
Electrophysiology of Peripheral Neuropathies
In contrast, a disease process that primarily affects axons also causes loss of the axon-mediated trophic influences on target organs. The muscle becomes atrophic, with a resultant decline in CMAP amplitude. Axon loss produces a diminution in sensory or compound nerve action potential amplitude. Involvement of all the axons in a nerve may render the nerve inexcitable, and no motor or sensory potentials can be elicited. However, any surviving axons will conduct at their normal velocity. If a disease process produces dropout of 50% of the axons in a nerve, the electrodiagnostic picture would be a 50% (Å) loss of CMAP amplitude but relatively normal CV. Clinical and electrophysiologic characteristics helpful in distinguishing axonopathy from myelinopathy are summarized in Table 233-2.
CLINICAL | ELECTRODIAGNOSTIC |
---|---|
AXONOPATHY | |
CMAP, compound muscle action potential; CSF, cerebrospinal fluid; CV, conduction velocity; DML, distal motor latency; NAP, nerve action potential; SNAP, sensory nerve action potential.
Clinical weakness seems to correlate with conduction block, not with CV slowing or temporal dispersion. A great deal has been made of distinguishing between conduction block and temporal dispersion, but the distinction is of questionable utility because both these phenomena indicate a focal demyelinating lesion in the subjacent nerve.3 As a result, the fairly simple criterion of a significant loss of negative spike or peak-to-peak amplitude with proximal stimulation as compared with distal stimulation may suffice to indicate demyelination, and whether the loss of amplitude is due to conduction block, temporal dispersion, or a combination of the two is relatively immaterial.
Demyelination may occur in two major patterns. Disorders that affect myelin diffusely because of a genetic defect, biochemical abnormality, or the effect of certain drugs or toxins produce global, uniform demyelination. There is little variation from nerve to nerve or from segment to segment of any given nerve.4 In the majority of patients with familial demyelinating neuropathy, distal motor latencies are prolonged in proportion to CV, median and ulnar forearm CV does not vary by greater than 5 m/sec, and there is no evidence of conduction block or temporal dispersion. Such uniform slowing of conduction suggests a generalized dysfunction of myelin or Schwann cells.
Other laboratory tests are often useful. Macrocytosis on the hematology profile may be a clue to vitamin B12 deficiency or to alcohol abuse. If alcoholism is strongly suspected, carbohydrate-deficient transferrin may be useful. It reflects the level of alcohol intake over the preceding weeks or months in the same way that glycosylated hemoglobin reflects chronic blood sugar levels. An elevated carbohydrate-deficient transferrin level may be a clue to occult alcohol abuse as the cause of a generalized polyneuropathy.5 Abnormal liver function test results, especially γ-glutamyltransferase, may reflect alcohol abuse or a neuropathy related to underlying hepatitis, especially hepatitis C. Hepatitis C may cause a neuropathy associated with cryoglobulinemia. Cryoglobulins are difficult to detect; they are large complex molecules that may cross-react with rheumatoid factor, so a positive rheumatoid factor test may be a clue to hepatitis C. Many other systemic diseases may be manifested as a peripheral neuropathy, including connective tissue disorders, systemic vasculitis, vitamin B12 deficiency, Lyme disease, paraproteinemias, porphyria, hypothyroidism, human immunodeficiency virus (HIV) infection, amyloidosis, sarcoidosis, and occult malignancy.
Peripheral neuropathy is obviously common in patients with diabetes mellitus. Recently, controversy has arisen regarding the diagnosis of neuropathy in patients with an abnormal 2-hour glucose tolerance test but without frank diabetes and the proper screening test for patients with idiopathic peripheral neuropathy, especially sensory neuropathy. Undiagnosed impaired fasting glucose metabolism appears to be associated with neuropathy at a higher frequency than in the general population when the 2-hour oral glucose tolerance test is used as opposed to a fasting blood sugar and glycosylated hemoglobin level.6 In a study of 100 consecutive patients with apparently idiopathic peripheral neuropathy, the prevalence of undiagnosed abnormal fasting glucose metabolism was found to be nearly twofold higher (62%) in patients with neuropathy than in controls. The 2-hour oral glucose tolerance test provided a higher diagnostic rate with the 2003 revised American Diabetes Association criteria. There is increasing evidence that abnormal glucose metabolism, or prediabetes, may be a risk factor for neuropathy and that a 2-hour oral glucose tolerance test may be more sensitive than fasting blood sugar and glycosylated hemoglobin in detecting this condition.
In Tables 233-3 to 233-6, neuropathies are classified into demyelinating versus axonal and whether the onset is acute/subacute versus subacute/chronic. Other common classifications include (1) mixed axonopathy/myelinopathy: diabetes, end-stage renal disease (ESRD), and some cases of acute or chronic inflammatory demyelinating neuropathy; (2) primarily motor polyneuropathies: most cases of GBS, CIDP, porphyria, dapsone and lead intoxication, and CMT disease; (3) large-fiber sensory neuropathies: uremia, diabetes (pseudotabes), paraneoplastic neuropathy, Sjögren’s syndrome, vitamin B12 deficiency, Friedreich’s ataxia, certain toxins (e.g., pyridoxine, cisplatin, and metronidazole), acute idiopathic sensory neuronopathy, and some cases of CIDP; (4) small-fiber sensory neuropathies: diabetes mellitus (pseudosyringomyelia), amyloidosis, hereditary sensory autonomic neuropathies, and leprosy; and (5) neuropathies with major autonomic dysfunction: diabetes, alcoholism, amyloidosis, hereditary sensory autonomic neuropathy type III (Riley-Day syndrome), GBS, porphyria, vincristine toxicity, and idiopathic pandysautonomia.
UNIFORM DIFFUSE DEMYELINATION |
SEGMENTAL, MULTIFOCAL DEMYELINATION |
* Both patterns have been reported.
† Recall that Guillain-Barré syndrome is a syndrome, not a disease, and can occur as part of several conditions.
UNIFORM, DIFFUSE DEMYELINATION |
Buy Membership for Neurosurgery Category to continue reading. Learn more here
|