Neurocutaneous Syndromes

Published on 12/04/2015 by admin

Filed under Neurology

Last modified 22/04/2025

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 0 (0 votes)

This article have been viewed 4247 times

Chapter 65 Neurocutaneous Syndromes

Chapter Outline

Tuberous Sclerosis

Neurofibromatosis

Sturge-Weber Syndrome

Von Hippel-Lindau Syndrome

Hereditary Hemorrhagic Telangiectasia

Hypomelanosis of Ito

Incontinentia Pigmenti

Ataxia-Telangiectasia

Epidermal Nevus Syndrome

Neurocutaneous Melanosis

Ehlers-Danlos Syndrome

Cerebrotendinous Xanthomatosis

Progressive Facial Hemiatrophy

Kinky Hair Syndrome (Menkes Disease)

Xeroderma Pigmentosum

Other Neurological Conditions with Cutaneous Manifestations

Neurocutaneous disorders are congenital or hereditary conditions that feature lesions of both the skin and nervous system. Although each condition, or phakomatosis, is distinct and characterized by a unique pathophysiology, the concept of neurocutaneous disorders unifies those neurological disorders whose identification depends primarily on simple visual diagnosis. These disorders may be inherited or sporadic. Advances in clinical genetics have established the molecular basis for some, although recognition and treatment still require an appreciation of the cutaneous and systemic symptoms. This chapter reviews the clinical features of the more common neurocutaneous syndromes.

Tuberous Sclerosis

Tuberous sclerosis complex (TSC) is a disorder of cellular differentiation and proliferation that can affect the brain, skin, kidneys, heart, and other organs. Many clinical features of TSC result from hamartomas, but true neoplasms also occur, particularly in the kidney and brain. Abnormal neuronal migration plays a major additional role in neurological dysfunction (Roach and Sparagana, 2004).

Population-based studies suggest a prevalence of 1 per 6000 to 9000 individuals. However, because of the striking variability of clinical expression, establishing the diagnosis of TSC can be difficult in individuals with subtle findings, and the true prevalence may be considerably higher. Cutaneous findings are usually the first clue that a patient has TSC, but other features may lead to the diagnosis (Box 65.1). In infants, cardiac involvement and seizures frequently are presenting signs, whereas dermatological, pulmonary, or renal involvement may lead to diagnosis in older individuals.

Box 65.1

Diagnostic Criteria for Tuberous Sclerosis Complex

Reprinted with permission from Roach, E.S., Gomez, M.R., Northrup, H., 1998. Tuberous sclerosis consensus conference: revised clinical diagnostic criteria. J Child Neurol 13, 624-628.

The inheritance of TSC is as an autosomal dominant trait with variable penetrance. The estimated spontaneous mutation rate for TSC varies from 66% to 86%, depending in part on the completeness of investigation of the extended family. Two genes are responsible for TSC: TSC1, coding for hamartin at chromosome 9q34.3; and TSC2, coding for tuberin adjacent to the gene for adult polycystic kidney disease at chromosome 16p13.3. The clinical features of TSC1 and TSC2 overlap, since the two gene products form a single functional unit that is an upstream modulator in the mTOR (mammalian target of rapamycin) signaling pathway. Both gene products down-regulate small G-protein Ras-homologue enriched in brain (RHEB) activity in this pathway. However, genotype-phenotype studies indicate that individuals with a TSC2 mutation tend to have more severe disease, and the frequency of TSC2 mutations is greater among individuals with spontaneous mutations (Sancak et al., 2005). Multiple mutation types exist in different regions of each gene, and even individuals with identical genetic mutations can have different phenotypes. Molecular diagnostic testing—including prenatal testing—has been available since the early 2000s, and a disease-causing mutation is identified in 85% meeting clinical criteria. Individuals with no mutation identified may have distinctive clinical features. Large genomic deletions and rearrangements are more common in the TSC2 gene compared to TSC1, and more mutations have been identified for TSC2 versus TSC1. TSC2 mutations appear more commonly than TSC1 in patients with subependymal nodules, mental retardation, renal angiomyolipomas, and retinal phakomas. Mental retardation and other neuropsychiatric involvement are more likely in individuals with TSC2 versus TSC1 mutation (Au et al., 2007).

Cutaneous Features

The cutaneous lesions of TSC include hypomelanotic macules, the shagreen patch, ungual fibromas, and facial angiofibromas. Hypomelanotic macules (ash leaf spots) occur in up to 90% of affected individuals (Fig. 65.1). The lesions usually are present at birth but may be seen in the newborn only with an ultraviolet light. Other pigmentary abnormalities include confetti lesions (areas with stippled hypopigmentation, typically on the extremities) and poliosis (a white patch or forelock) of the scalp, hair, or eyelids (Fig. 65.2, D). Hypomelanotic macules are common in normal individuals (Table 65.1), but three or more hypomelanotic papules is a major diagnostic criterion for TSC.

image

Fig. 65.1 A hypomelanotic macule (ash leaf spot) (arrow) from the leg of a patient with tuberous sclerosis.

(Reprinted with permission from Weiner, D.M., Ewalt, D.H., Roach, E.S., et al., 1998. The tuberous sclerosis complex: a comprehensive review. J Am Coll Surg 187, 548-561.)

image

Fig. 65.2 Classic cutaneous manifestations of tuberous sclerosis include facial angiofibromas (A), shagreen patch (B), ungual fibromata (C), and poliosis (D).

(Reprinted with permission from Roach, E.S., Delgado, M.R., 1995. Tuberous sclerosis. Dermatol Clin 13, 151-161.)

Table 65.1 Frequency of Lesions in Individuals with Tuberous Sclerosis Versus Other Individuals

Lesion Tuberous Sclerosis Complex Other Individuals
Hypomelanotic macules Occur in over 95% of tuberous sclerosis (TSC) patients, often with many lesions11 Occur in up to 5% of the population (but usually fewer than three lesions per person)12
Facial angiofibromas Eventually seen in 75% but less often in children11 Seen in individuals with multiple endocrine neoplasia type 1 and in a few sporadic families13
Shagreen patch Up to 48%11 Occasional
Ungual fibromas Seen in 15% but often not until develop in adulthood11 Occasionally sporadic or after nail trauma (but typically one lesion)14
Rhabdomyomas One or more tumors seen in 47%-65% but much more common below 2 years
Up to 51% of patients with rhabdomyomas have TSC15-17
In 14%-49% of rhabdomyoma patients, there are no other signs of TSC16
Renal angiomyolipoma (AML) Often multiple AML occur in up to 80% of TSC patients by age 1018 Sporadic AML occur but are typically solitary
Renal cysts Polycystic kidneys occur in 3%-5% of TSC patients
Smaller numbers of renal cysts are present in 15%-20%18
There are both dominant and recessive polycystic kidney diseases
A few cysts are frequent sporadic findings in adults
Cortical dysplasia/tubers 90%-95% and usually multiple lesions are present (magnetic resonance imaging yields highest detection rate)25 Sporadic cortical dysplasia (typically 1 lesion) is common among individuals who have epilepsy not due to TSC
Subependymal nodules 83%-93%2,25 Rare, especially if calcified
Subependymal giant cell tumors Up to 15% (using radiographic criteria)19 Rare in the absence of TSC

From Roach, E.S., Sparagana, S.P., 2010. Diagnostic criteria for tuberous sclerosis complex. In: Kwiatkowski, D.J., Whittemore, V.H., Thiele, E.A. (Eds.), Tuberous Sclerosis Complex: Genes, Clinical Features, and Therapeutics. Weinheim, Wiley-VCH Verlag GmbH & Co., pp. 21-25. Used with permission.

Facial angiofibromas (adenoma sebaceum) consist of vascular and connective tissue elements. Although considered specific for TSC, they are found in only three-fourths of affected individuals and often appear several years after other means have established the diagnosis. The lesions typically become apparent during the preschool years as a few small red macules on the malar region; they gradually become papular, larger, and more numerous, sometimes extending down the nasolabial folds or onto the chin (see Fig. 65.2, A). Laser therapy may be a useful therapeutic intervention and particularly helpful in early childhood or just prior to puberty, before a time when growth may be rapid and more aggressive interventions warranted.

The shagreen patch most often is found on the back or flank area; it is an irregularly shaped, slightly raised, or textured skin lesion (see Fig. 65.2, B). Only 20% to 30% of patients with TSC have one patch, which may not be seen in young children. Usually considered specific for TSC, ungual fibromas are nodular or fleshy lesions that arise adjacent to (periungual) or underneath (subungual) the nails (see Fig. 65.2, C). These can occur as a single lesion after trauma in normal individuals. Ungual fibromas occur in only 15% to 20% of patients with TSC, more likely in adolescents or adults.

Forehead plaques or fibrous facial plaques resemble angiofibromas histologically, though they are not papular. Angiofibromas have improved with oral rapamycin administered for immunosuppression related to renal transplantation in TSC, and topical application is under consideration for study.

Neurological Features

The predominant neurological manifestations of TSC are mental retardation, seizures, and behavioral abnormalities, although milder forms of the disease with little or no neurological impairment are common. Neurological lesions probably result from impaired cellular interaction resulting in disrupted neuronal migration along radial glial fibers and abnormal proliferation of glial elements. Neuropathological lesions of TSC include subependymal nodules (SENs), cortical and subcortical hamartomas (tubers), areas of focal cortical hypoplasia, and heterotopic gray matter. SENs commonly arise from germinal matrix progenitors in the caudothalamic groove near the foramen of Monro. These lesions can grow over time, but usually only into adolescence, after which time they calcify. These remain asymptomatic unless they enlarge and transform into subependymal giant-cell astrocytomas (SEGAs). Tubers frequently extend from the ventricle wall to the cortical surface, with a linear or wedge-shaped distribution. Similar to normal brain, tubers develop between 14 and 16 weeks gestation, such that the tuber load is established before birth, though they may not be visualized until later childhood, given myelination status. These focal malformations of cortical development most frequently involve one gyrus at a time, but more diffuse involvement such as hemimegalencephaly can occur as well. Histology of these areas demonstrates disorganized cortical lamination and underlying abnormal myelination with indistinct gray/white junction architecture. Calcinosis frequently is present. Dysmorphic neurons can be present, and other abnormal astrocytes similar to those seen in sporadic focal cortical dysplasias are termed balloon cells or giant cells for their abundant cytoplasm.

Seizures of various types occur in 80% to 90% of patients. Most develop during the first year postpartum, which is an indicator for autism and poor cognitive development. TSC is the most common cause of infantile spasms, and one-third of children with TSC develop them. Children with infantile spasms have more cortical lesions demonstrated by magnetic resonance imaging (MRI) and are more likely to exhibit long-term cognitive impairment. For many, vigabatrin has been a more effective treatment option than adrenocorticotropin hormone (ACTH). Occasionally, children can discontinue their antiepileptic medication. Corpus callosotomy is an option in young children. Resective epilepsy surgery is a consideration in individuals with seizures localizing to a single tuber, who can experience seizure freedom or at least significant seizure reduction.

Most patients with mental retardation have epilepsy, but many have seizures and normal intelligence. The number of subependymal lesions does not correlate with the clinical severity of TSC, but patients with MRI evidence of numerous cortical lesions tend to have more cognitive impairment and more difficulty with seizure control. The most abnormal regions seen on MRI tend to coincide with focal abnormalities of the electroencephalogram (EEG). The likelihood of intellectual disability in patients with TSC probably is overestimated, and the severity of intellectual dysfunction ranges from borderline to profound mental retardation. However, in addition to intellectual disability, many children with TSC have serious behavioral disorders. Autistic behavior, hyperkinesis, aggressiveness, and frank psychosis sometimes occur, either as isolated problems or in combination with epilepsy or intellectual deficit. The prevalence of autistic spectrum disorders is 25% to 50% and equal between boys and girls. Behavioral problems are frequent and independent of intellectual ability (de Vries, 2010). Mood disorders also are increased.

Computed tomography (CT) best demonstrates the calcified subependymal nodules that characterize TSC (Fig. 65.3). CT sometimes shows superficial cerebral lesions, but they are far more obvious with T2-weighted MRI (Fig. 65.4). T2-weighted scans show evidence of abnormal neuronal migration in some patients as high-signal linear lesions running perpendicular to the cortex. SENs along the ventricular surface give the characteristic appearance of candle guttering. More than one-fourth of patients with TSC show cerebellar anomalies.

image

Fig. 65.3 Computed cranial tomography scan from a child with tuberous sclerosis complex demonstrates typical calcified subependymal nodules; a large calcified parenchymal lesion (arrowhead) and low-density cortical lesions (arrows) are seen as well.

(Reprinted with permission from Roach, E.S., Kerr, J., Mendelsohn, D., et al., 1991. Diagnosis of symptomatic and asymptomatic gene carriers of tuberous sclerosis by CT and MRI. Ann N Y Acad Sci 615, 112-122.)

Subependymal giant-cell astrocytomas (SEGAs) develop in 6% to 14% of patients with TSC. Unlike the more common cortical tubers and SENs, giant-cell astrocytomas can enlarge (Fig. 65.5) and cause symptoms of increased intracranial pressure, particularly if extension into the lateral ventricles creates an obstructive hydrocephalus. Clinical features include new focal neurological deficits, increased intracranial pressure, unexplained behavior change, or deterioration of seizure control. Acute or subacute onset of neurological dysfunction may result from sudden obstruction of the ventricular system by an intraventricular SEGA. Rarely, acute deterioration occurs because of hemorrhage into the tumor itself.

Giant-cell tumors are usually benign but locally invasive, and early surgery can be curative. Identification of an enlarging SEGA before the onset of symptoms of increased intracranial pressure or appearance of new neurological deficits is ideal. Periodic screening to identify SEGA may improve surgical outcome. Recent work suggests that rapamycin inhibits the growth of SEGAs (Franz et al., 2006).

Retinal Features

The frequency of retinal hamartomas in TSC varies from almost negligible to 87% of patients, probably reflecting the expertise and technique of the examiner. Pupillary dilatation and indirect ophthalmoscopy are important, particularly in uncooperative children. Findings vary from classic mulberry lesions adjacent to the optic disc (Fig. 65.6) to plaque-like hamartoma or depigmented retinal lesions. Most retinal lesions are clinically insignificant, but some patients have visual impairment caused by large macular lesions, and very few patients have visual loss caused by retinal detachment, vitreous hemorrhage, or hamartoma enlargement. Occasionally, patients have a pigmentary defect of the iris. Funduscopic examination is valuable at the time of diagnosis, to monitor existing abnormalities or evaluate for new symptoms. The histological features of retinal hamartomas, subependymal nodules, and subependymal giant-cell astrocytomas are similar.

image

Fig. 65.6 A retinal astrocytoma (mulberry lesion) adjacent to the optic nerve is typical of those found in tuberous sclerosis.

(Reprinted with permission from Roach, E.S., 1992. Neurocutaneous syndromes. Pediatr Clin North Am 39, 591-620.)

Systemic Features

Cardiac

Approximately two-thirds of patients with TSC have a cardiac rhabdomyoma, but few demonstrate clinical symptoms. Cardiac rhabdomyomas are hamartomas, tend to be multiple, and involute with time. These lesions sometimes are evident on prenatal ultrasound testing (Fig. 65.7)—usually after 24 weeks gestational age—and most who develop cardiac dysfunction present soon after birth with heart failure. A few children later develop cardiac arrhythmias or cerebral thromboembolism from the rhabdomyomas. The cause of congestive heart failure is either by obstruction of blood flow by intraluminal tumor or by lack of sufficient normal myocardium to maintain perfusion. Some patients stabilize after medical treatment with digoxin and diuretics and eventually improve; others require surgery. Echocardiography and electrocardiogram establish the diagnosis. Arterial aneurysms can occur. For existing rhabdomyomas, perform surveillance studies every 6 to 12 months until stabilization or involution occurs. The size of these lesions may increase with hormone exposure—a consideration in the neonate, pubertal individual, and child treated with ACTH for infantile spasms.

image

Fig. 65.7 Prenatal ultrasound study reveals a large cardiac rhabdomyoma (arrow) and two smaller rhabdomyomas (arrowheads) in a child who subsequently proved to have tuberous sclerosis.

(Reprinted with permission from Weiner, D.M., Ewalt, D.E., Roach, E. S., et al., 1998. The tuberous sclerosis complex: a comprehensive review. J Am Coll Surg 187, 548-561.)

Renal

Renal angiomyolipomas occur in up to three-fourths of patients with TSC, usually presenting by 10 years of age. Most of these lesions are histologically benign tumors with varying amounts of vascular tissue, fat, and smooth muscle (Fig. 65.8). Bilateral tumors or multiple tumors in a kidney are common. The prevalence and size of renal tumors increase with age, and tumors larger than 4 cm are much more likely to become symptomatic than smaller tumors. Renal cell carcinoma or other malignancies are less common but affect TSC patient at younger ages than the general population. Coalescing angiomyolipomata can contribute to end-stage renal disease. Endovascular embolization of the larger renal angiomyolipomata prevents hemorrhage and other complications (Ewalt et al., 2005). Rapamycin limits the growth of these tumors, at least transiently.

image

Fig. 65.8 A large angiomyolipoma of the lower pole of a kidney removed at surgery; several smaller angiomyolipomas (arrows) can be seen in the same specimen.

(Reprinted with permission from Weiner, D.M., Ewalt, D.E., Roach, E.S., et al., 1998. The tuberous sclerosis complex: a comprehensive review. J Am Coll Surg 187, 548-561.)

Single or multiple renal cysts are also a feature of TSC; these tend to appear earlier than the renal tumors. Ultrasound or cranial CT easily identifies larger cysts, and the combination of renal cysts and angiomyolipomas is characteristic of TSC. Individual renal cysts may disappear. Surveillance imaging is recommended, at least every 2 to 3 years—more frequently in those with existing or symptomatic renal involvement.

Neurofibromatosis

Neurofibromatosis (NF) is actually two separate diseases, each caused by a different gene. NF type 1 (NF1), or von Recklinghausen disease, is the most common of the neurocutaneous syndromes, occurring in approximately 1 in 3000 people. NF type 2 (NF2) is characterized by bilateral vestibular schwannomas and often is associated with other brain or spinal cord tumors. NF2 occurs in only 1 in 35,000 to 50,000 people. Inheritance for both is an autosomal dominant pattern, but approximately half of NF1 cases result from a spontaneous mutation. The clinical features of both conditions are highly variable.

A mutation of the 60-exon NF1 gene on chromosome 17q11.2 causes NF1. The NF1 gene product, neurofibromin, is a tumor-suppression GTPase-activating protein functioning to inhibit Ras-mediated cell proliferation. Despite identification of approximately 100 mutations of NF1 in various regions of the gene, none correlates to a specific clinical phenotype.

Several patients have developed a somatic NF1 mutation affecting only a limited region of the body. With this segmental NF, one extremity may have café-au-lait lesions, subcutaneous neurofibromas, and other signs of NF, but the rest of the body is unaffected. Similarly, some patients with only gonadal mosaicism have no outward manifestations of NF1 but have multiple affected offspring.

A mutation of the NF2 gene on chromosome 22 causes NF2. The NF2 protein product is schwannomin or merlin. The NF2 gene suppresses tumor function. Dysfunction of the NF2 gene accounts for the occurrence of multiple central nervous system (CNS) tumors in patients with NF2. The NF2 gene has several different mutations. The clinical severity may be related to the nature of the NF2 mutation; missense mutations that allow some protein function tend to produce milder clinical forms, whereas frameshift and nonsense mutations that produce stop codons preventing the production of any protein often cause severe disease (Evans, 2004).

If several characteristics are present, the diagnosis of either NF1 or NF2 is obvious, especially when another family member is affected. The diagnosis is difficult when the clinical features are atypical and the family history is negative. Very young children may have fewer apparent lesions, making definitive diagnosis difficult. Diagnostic criteria (Box 65.2) help to resolve some of these questionable cases, but specific gene testing is replacing the use of clinical criteria. Screening for the NF1 gene is technically difficult because the gene is large and several different mutations are causative. Commercially available studies have a 30% false-negative rate. Some suggest the diagnosis of NF2 based on multiple meningiomas or nonvestibular schwannomas even without family history or classic bilateral vestibular schwannomas.

Cutaneous Features of Neurofibromatosis Type 1

Cutaneous lesions of NF1 (Fig. 65.9) include café-au-lait spots, subcutaneous neurofibromas, plexiform neurofibromas, and axillary freckling. Café-au-lait spots are flat, light to medium brown areas that vary in shape and size. They typically are present at birth but increase in size and number during the first few years of life. Later in childhood, skin freckling, 1 to 3 mm in diameter, often occurs symmetrically in the axillae (Crowe sign) and other intertriginous regions. Most children with 6 or more café au lait spots as their only diagnostic criterion will go on to meet diagnostic criteria, usually by age 6.

Neurofibromas are benign tumors arising from peripheral nerves (see Fig. 65.9, B). These tumors are composed predominantly of Schwann cells and fibroblasts but contain endothelial, pericytes, and mast cell components. Neurofibromas can develop at any time; their size and number often increase after puberty.

Plexiform neurofibromas often occur on the face and can cause substantial deformity (see Fig. 65.9, C). Patients with plexiform tumors of the head, face, or neck and those who presented before 10 years of age are more likely to do poorly (Needle et al., 1997). Plexiform neurofibromas have a 5% to13% lifetime risk of malignant degeneration into malignant peripheral nerve sheath tumors. Malignant peripheral nerve sheath tumors (MPNST) carry poor 5-year survival rates despite treatment with surgery, chemotherapy, and radiation. PNFs and MPNST are difficult to distinguish radiographically and sometimes even pathologically.

Systemic Features of Neurofibromatosis Type 1

Lisch nodules are pigmented iris hamartomas (Fig. 65.10). They are pathognomonic for NF1. Lisch nodules do not cause symptoms; their significance lies in their implications for the diagnosis of NF1. Lisch nodules are often not apparent during early childhood, so their absence does not exclude the diagnosis of NF1. Rarely, children with NF1 have retinal hamartomas, but these usually remain asymptomatic.

image

Fig. 65.10 Lisch nodules (arrow) of the iris in a patient with neurofibromatosis type 1.

(Reprinted with permission from Roach, E.S., 1992. Neurocutaneous syndromes. Pediatr Clin North Am 39, 591-620.)

Dysplasia of the renal or carotid arteries occurs in a small percentage of patients with NF1. Renal artery stenosis causes systemic hypertension. Another potential cause of hypertension is pheochromocytoma. Several forms of cerebral artery dysplasia occur, most commonly moyamoya syndrome, which promotes cerebral infarction in children and brain hemorrhage in adults. Arterial aneurysms occur as well.

The most common skeletal manifestations in NF1 consist of short stature and macrocephaly. Macrocephaly is independent of hydrocephalus accompanying aqueductal stenosis, which also occurs in this disorder. Other skeletal abnormalities include long-bone dysplasia (resulting in pathological fractures and subsequent pseudoarthrosis), scoliosis, and bony erosion secondary to adjacent tumor. Dysplasia of the sphenoid wing is common.

LEOPARD syndrome (lentigenes, ECG conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal (male) genitalia, retardation of growth, deafness) is an autosomal dominant disorder whose features also include café au lait spots and obstructive cardiomyopathy. The café-au-lait spots and cardiac abnormalities may suggest NF1. Legius syndrome is another autosomal dominant NF-like syndrome; it is characterized by similar cutaneous features but little tumorigenesis.

Neurological Features in Neurofibromatosis Type 1

NF1 affects the nervous system in several ways, but the clinical features vary even within the same family. Tumors occur in the brain, spinal cord, and peripheral nerves.

Optic nerve glioma (Fig. 65.11) is the most common CNS tumor caused by NF1. Approximately 15% of patients with NF1 have unilateral or bilateral optic glioma. The growth rate of these tumors varies, but they tend to behave less aggressively in patients with NF1 than those without NF1. When symptomatic, the presenting features are optic atrophy, progressive vision loss, pain, or proptosis. Precocious puberty is a common presenting feature of chiasmatic optic nerve tumors in children with NF1. Management options include observation with serial brain MRI or treatment with radiation, chemotherapy, or excision. Radiation is less favored, especially given possible exacerbation of vasculopathy in this population.

Ependymomas, meningiomas, and astrocytomas of the CNS occur in patients with NF1 less often than in patients with NF2. Neurofibromas and schwannomas are common but not always symptomatic; they develop on either cranial nerves or spinal nerve roots. The symptoms from these tumors (discomfort, pain, numbness, weakness, and bowel/bladder dysfunction) reflect their size, location, and rate of growth.

Macrocephaly is seen in half of NF1 patients, typically attributable to megalencephaly related to increases in white-matter volume. Approximately 60% to 78% of patients with NF1 have increased signal lesions within the basal ganglia, thalamus, brainstem, and cerebellum on T2-weighted MRIs (Fig. 65.12). These areas are not routinely visible with CT. The origin and significance of these radiographic lesions are unclear, and they are referred to at times as unidentified bright objects (UBOs). Whether these MRI lesions correlate with the likelihood of cognitive impairment still is debatable; radiographic findings do not correlate with neurological deficits. Patients with NF1 tend to have full-scale intelligence quotient (IQ) scores within the low-normal range and to exhibit behavioral problems. These symptoms may be related to vascular changes in myelin sheath. Deep gray-matter radiological findings tend to decrease with time, while cortical and subcortical findings do not decrease or increase.

Clinical Features of Neurofibromatosis Type 2

Patients with NF2 have few cutaneous lesions, and these tend to be subtle. Instead, patients often have multiple types of CNS tumors (thus the designation of central NF). Café-au-lait spots and subcutaneous neurofibromas are less common. Lisch nodules are uncommon, although some patients show presenile posterior subcapsular cataracts.

Most patients who meet established diagnostic criteria for NF2 (see Table 65.3) eventually develop bilateral vestibular schwannomas, previously termed acoustic neuromas (Fig. 65.13). Symptoms of NF2 typically develop in adolescence or early adulthood but can begin in childhood. Common complaints with large acoustic tumors include hearing loss, tinnitus, vertigo, facial weakness, poor balance, and headache. Unilateral hearing loss is relatively common in the early stages. Consider screening with annual auditory brainstem responses or brain MRI.

image

Fig. 65.13 Cranial magnetic resonance imaging scan from a child with neurofibromatosis type 2 shows bilateral vestibular tumors (arrows).

(Reprinted with permission from Roach, E.S., 1992 Neurocutaneous syndromes. Pediatr Clin North Am 39, 591-620.)

Other CNS tumors occur, but much less often than vestibular schwannomas. The term MISME syndrome (multiple inherited schwannomas, meningiomas, and ependymomas) applies to this disorder. The clinical features of these tumors depend primarily on the lesion’s location within the brain and spinal cord. Schwannomas of other cranial nerves occur in some patients. Meningiomas, ependymomas, and astrocytomas also occur with increased frequency. Patients with NF2 may develop multiple simultaneous tumor types, and baseline imaging at the time of diagnosis should include the brain and spinal cord.

Merlin is a novel regulator of TSC/mTORC1 signaling, such that rapamycin is being evaluated in the management of NF2 tumors (James et al., 2009).

Sturge-Weber Syndrome

The characteristic features of Sturge-Weber syndrome (SWS) are a facial cutaneous angioma (port-wine nevus) and an associated ipsilateral leptomeningeal and brain angioma. In addition to the facial nevus, other findings include mental retardation, seizures, contralateral hemiparesis and hemiatrophy, and homonymous hemianopia (Bodensteiner and Roach, 2010). However, the clinical features are variable, and individuals with cutaneous lesions and seizures but with normal intelligence and no focal neurological deficits are common. The syndrome occurs sporadically and in all races.

Cutaneous Features

The nevus typically involves the forehead and upper eyelid but also may involve both sides of the face and extend onto the trunk and limbs (Fig. 65.14). Nevi that involve only the trunk, or facial nevi that spare the upper face, rarely are associated with intracranial angioma. The facial angioma is usually obvious at birth; it may thicken over time and develop a nodular texture. Reactive hypertrophy of adjacent bone and connective tissue may occur. Some children have the characteristic neurological and radiographic features of SWS yet have no skin lesions. More frequently, the typical cutaneous and ophthalmic findings are present without clinical or radiographic evidence of an intracranial lesion. Only 10% to 20% of children with a port-wine nevus of the forehead have a leptomeningeal angioma. Although the leptomeningeal angioma is typically ipsilateral to a unilateral facial nevus, bilateral brain lesions occur in at least 15% of patients, including some with a unilateral cutaneous nevus.

image

Fig. 65.14 A, A patient with the classic distribution of the port-wine nevus of Sturge-Weber syndrome on the upper face and eyelid. B, Another patient whose port-wine nevus involves both sides of the face and extends onto the left trunk and arm.

(A reprinted with permission from Roach, E.S., 1989. Congenital cutaneovascular syndromes, In: Vinken, P.V., Bruyn, G.W., Klawans, H.L. (Eds.), Handbook of Clinical Neurology, vol. 11, Vascular Diseases. Elsevier, Amsterdam, pp. 443-462. B reprinted with permission from Roach E.S., Riela, A.R., 1995. Pediatric Cerebrovascular Disorders, second ed. Futura, New York.)

Neurological Features

Epileptic seizures, mental retardation, and focal neurological deficits are the principal neurological abnormalities of SWS. Seizures usually start in conjunction with hemiparesis. Seizure onset before age 2 years increases the likelihood of future mental retardation and refractory epilepsy. Mental retardation is likely in children with refractory seizures, whereas children who never experience seizures usually have normal intelligence. Few children who remain normal after age 3 years will later develop severe intellectual impairment.

Seizures eventually develop in 72% to 80% of patients with SWS with unilateral lesions and in 93% of patients with bihemispheric involvement. Although some begin in adult life, 75% of seizures begin during the first year, 86% by age 2, and 95% before age 5. Focal motor seizures or generalized tonic-clonic seizures are the most typical seizure type initially associated with SWS. Other initial seizure types are infantile spasms, myoclonic seizures, and atonic seizures. The first few seizures are often focal, even in patients who later develop generalized tonic-clonic seizures or infantile spasms. Older children and adults are more likely to have complex partial seizures or focal motor seizures. Seizures can be refractory or may remain well controlled for long intervals.

The neurological impairment caused by SWS depends in part on the site of the intracranial vascular lesion. Because the occipital region frequently is involved, visual-field deficits are common. Hemiparesis often develops acutely in conjunction with the initial flurry of seizures. Although often attributed to postictal weakness, hemiparesis may be permanent or persist longer than typical of a postictal deficit. Some children develop sudden weakness without seizures, either as repeated episodes of weakness similar to transient ischemic attacks or as a single stroke-like episode with persistent neurological deficit. Not all patients have permanent focal neurological signs.

Early developmental milestones may be normal, but mild to profound mental deficiency eventually develops in approximately half of patients. Only 8% of the patients with bilateral brain involvement are intellectually normal. Behavioral concerns are frequent, even in patients who are not intellectually disabled. The clinical condition eventually stabilizes, resulting in residual hemiparesis, hemianopia, retardation, and epilepsy, but without further deterioration.

Diagnostic Studies

Most children with a facial port-wine nevus do not have an intracranial angioma. Neuroimaging studies help distinguish children with SWS from those with isolated cutaneous lesions. Although gyral calcification is a typical feature of SWS, the tram-track appearance first described on standard radiographs is uncommon and is almost never present in neonates. CT shows intracranial calcification much earlier (Fig. 65.15) than standard skull radiographs Extensive cerebral atrophy is apparent even with CT, but MRI more readily shows subtle atrophy.

image

Fig. 65.15 Computed tomographic scan from a typical patient with Sturge-Weber syndrome; the gyriform calcification pattern (arrow) is easily seen in the left occipital area.

(Reprinted with permission from Garcia, J.C., Roach, E.S., McClean, W.T., 1981. Recurrent thrombotic deterioration in the Sturge-Weber syndrome. Childs Brain 8, 427-433.)

MRI with gadolinium contrast (Fig. 65.16) effectively demonstrates the abnormal intracranial vessels in patients with SWS. Functional imaging with positron emission tomography (PET) demonstrates reduced metabolism of the brain adjacent to the leptomeningeal lesion. However, patients with recent-onset seizures may have increased cerebral metabolism near the lesion. Single-photon emission computed tomography (SPECT) shows reduced perfusion of the affected brain. Both PET and SPECT often reveal vascular changes extending well beyond the area of abnormality depicted by CT (Maria et al., 1998). Although functional imaging is not necessary for all patients, it may help initially to establish a diagnosis and may help localize the lesion before surgery.

Cerebral arteriography is no longer routine in the evaluation of SWS but is sometimes useful in atypical patients or prior to surgery for epilepsy. The veins are more abnormal than the arteries, with enlarged, tortuous, subependymal and medullary veins and sparse superficial cortical veins. Failure of the sagittal sinus to opacify after ipsilateral carotid injection may be due to obliteration of the superficial cortical veins by thrombosis; the abnormal deep venous channels probably have a similar origin as they form collateral conduits for nonfunctioning cortical veins. Microscopic hemorrhages are noticeable on pathology specimens, although significant intracranial hemorrhage is rare.

Treatment

Generally, the more extensive the intracranial lesion, the more difficult it is to control seizures with medication. Resection of a localized brain vascular lesion or hemispherectomy can often improve seizure control and may promote better intellectual development (Bourgeois et al., 2007). Despite general agreement on the efficacy of surgical resection, debate remains concerning patient selection and the timing of surgery. Almost one patient in five has bilateral cerebral lesions, limiting the surgical options unless one hemisphere is clearly responsible for most of the seizures. Often the patient selected for surgery is one with refractory seizures, clinical dysfunction (e.g., hemiparesis, hemianopia) of the area selected for resection, and failure to respond to an adequate trial of anticonvulsants. Patients with less extensive lesions should have a limited resection rather than a complete hemispherectomy. The limited resection preserves as much normal brain as possible, even at the risk of having to do another operation later. Corpus callosotomy is useful for patients with refractory tonic or atonic seizures and extensive disease. In effect, the surgical considerations in children with SWS are similar to those used with other epileptic patients.

Von Hippel-Lindau Syndrome

Von Hippel-Lindau (VHL) syndrome is an autosomal dominant inherited disorder characterized by hemangioblastomas arising in the retina and CNS, as well as visceral cysts and tumors. Hemangioblastomas may occur sporadically but are usually multiple and more likely to occur in young persons. Current prevalence estimates of this disorder are approximately 1 in 40,000.

Hemangioblastomas are benign slow-growing vascular tumors that cause symptoms from hemorrhage or local mass effect. Histologically, hemangioblastomas are composed of endothelium-lined vascular channels surrounded by stromal cells and pericytes. Mast cells are present and may produce erythropoietin.

The initial symptoms of VHL usually arise from effects of the vascular anomalies in the CNS, but some patients may present with pheochromocytoma or renal, pancreatic, hepatic, or epididymal tumors. One classification system categorizes patients according to whether pheochromocytoma is present. The most common pattern of VHL findings includes retinal and CNS hemangioblastomas and pancreatic cysts.

Neurological Features

The initial symptoms of VHL usually arise from effects of the vascular anomalies in the CNS. In the CNS, the most common site of hemangioblastomas is the cerebellum in approximately half of patients (Fig. 65.17), followed by spinal and medullary sites. Cerebral hemangioblastomas are present in less than 5% of patients with VHL. The cerebellar hemispheres are affected far more frequently than the cerebellar vermis. Cerebellar hemangioblastomas may begin in the second decade of life.

Early symptoms of cerebellar and brainstem hemangioblastomas include headache, the most common symptom, followed by ataxia, nausea and vomiting, and nystagmus. Symptoms are often intermittent or slowly progressive, but up to 20% of patients have an acute onset of symptoms following mild head trauma. Spinal hemangioblastomas typically present with focal back or neck pain and sensory loss or weakness. Because of their typical intramedullary location, spinal hemangioblastomas frequently lead to syringomyelia. The conus medullaris and the cervicomedullary junction are the most common sites. Brainstem hemangioblastomas tend to arise in the area postrema in the medulla, where they may be associated with syringobulbia. Occasionally, hemangioblastomas occur in the cerebral hemispheres or sites near the third ventricle, such as the pituitary gland or its stalk, the hypothalamus, or optic nerve. The incidence of cerebellar hemangioblastomas increases with age, so that 84% of patients with VHL have at least one such tumor by age 60 years.

Hemangioblastomas are best visualized using contrast-enhanced MRI. Routine screening of the brain and spinal cord should include precontrast and postcontrast T1-weighted images with thin sections through the posterior fossa and spinal cord and surface coil imaging of the entire spinal cord. Arteriography is not necessary for diagnosis but is valuable in demonstrating the feeding vessels if surgical resection is planned.

Endolymphatic sac tumors occur in 10% to 15% of these individuals. Sometimes they are bilateral. Presenting symptoms can be abrupt change in hearing accompanying hemorrhage or vertigo and tinnitus (Butman, 2008).

Systemic Features

Renal cysts are present in more than half of individuals with VHL, although, as with CNS and retinal hemangioblastomas, the patients may be asymptomatic. Extensive renal cysts rarely lead to renal failure. Of greater concern is renal cell carcinoma, which develops in more than 70% of patients and is the leading cause of death. These tumors are usually multiple and tend to occur at a younger age than sporadic renal cell carcinoma. Simple renal cysts arise from distal tubular epithelium, whereas renal cell carcinoma tumors arise from proximal tubular epithelium.

Pheochromocytomas occur in 7% to 19% of patients and may be the only clinical manifestation of VHL, even in carefully screened individuals. Tumors may be bilateral and occur outside the adrenal glands. Symptoms of pheochromocytoma include episodic or sustained hypertension, severe headache, and flushing with profuse sweating—or even hypertensive crises, stroke, myocardial infarction, and heart failure. Diagnostic laboratory investigation demonstrates excessive catecholamine concentrations in serum and urine.

Cysts and tumors of the pancreas and epididymis are also features of VHL. Pancreatic tumors include nonsecretory islet cell tumors, simple cysts, serous microcystic adenomas, and adenocarcinomas. Pancreatic cysts are the most common of these lesions and are asymptomatic unless they obstruct the bile duct or become numerous enough to cause pancreatic insufficiency. Islet cell tumors coincide frequently with pheochromocytomas, possibly because both tumors derive from neural crest cells. Epididymal cystadenomas also may be asymptomatic but palpable and cause discomfort.

Molecular Genetics

Confirming initial suspicions, the VHL gene is a tumor-suppressor gene located on chromosome 3p25-26. A mutation in the VHL gene also appears in many sporadic clear-cell renal carcinomas that present later in life as compared to those with VHL disease. It demonstrates a role in the function of hypoxia-induced factor, HIF2α. This regulation contributes to increased vascularization and up-regulation of proangiogenic genes and other oxygen-sensitive genes via hypoxia response elements (HRE). These genes include vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor alpha (TGF-α), glucose transporter-1 (GLUT1), carbonic anhydrase IX, and erythropoietin (EPO), among others. In particular, VEGF is important in angiogenesis; its levels in ocular fluid of patients is significantly higher than in unaffected subjects. Recognition of these affected genes has focused trials of certain therapies (Clarkson and Cookson, 2008).

Hundreds of known mutations exist. Despite complex genotype-phenotype relationships, some clinical correlations are possible. Missense mutations in this gene are associated with pheochromocytoma, whereas nonsense, frameshift, and splice-site mutations as well as deletions predominate in families without pheochromocytomas. Microdeletions and microinsertions, nonsense mutations, or deletions appear in 56% of families with VHL type 1, whereas missense mutations account for 96% of those responsible for VHL type 2 (Chen et al., 1995). Specific mutations in codon 238 account for 43% of the mutations responsible for VHL type 2, and one group of patients (type 2C) appears to be at low risk for any feature of VHL except pheochromocytoma.

Hereditary Hemorrhagic Telangiectasia

Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber syndrome or Osler-Weber-Rendu syndrome, is a highly penetrant autosomal dominant disorder characterized by telangiectasias of the skin, mucous membranes, and various internal organs. The prevalence is 1 in 10,000. Two different gene loci are responsible. One gene located at chromosome 9q33-34 (HHT1) encodes for endoglin, a TGF-β binding protein. The other gene, located at chromosome 12q13 (HHT2), encodes for activin A receptor type II–like 1 kinase, or ACVRL1. In some, SMAD4 gene mutation leads to juvenile polyposis and HHT. Up to 30% of cases arise from spontaneous mutations. The clinical features and the age at presentation are highly variable. Diagnostic criteria known as the Curacao criteria include spontaneous recurrent epistaxis, visceral manifestation, and an affected first-degree relative; these were formulated in 2000 and a revision published in 2009.

Cutaneous telangiectasias most often occur on the face, lips, and hands and are less common on the trunk. Telangiectasias of the nasal mucosa often cause epistaxis well before other complications of the disease occur and can be severe enough to contribute to iron-deficiency anemia. Approximately one-third of patients have conjunctival telangiectasias, and 10% have retinal vascular malformations, although vision loss from these lesions is uncommon. Telangiectasias are not prominent during the first decade, but they tend to enlarge and multiply thereafter.

Widespread vascular dysplasia of the lungs, gastrointestinal tract, or genitourinary system, depending on which site is predominantly affected, can produce hemoptysis, hematemesis, melena, or hematuria. Other involved organs and tissues can include the thyroid, diaphragm, liver, pancreas, spleen, vertebrae, or aorta. Pulmonary arteriovenous malformations (AVMs) occur in 15% to 20% of patients, and 60% to 90% of all pulmonary AVMs are associated with HHT. Screening includes chest radiograph, arterial blood gas on oxygen, and bubble contrast echocardiogram to evaluate for pulmonary shunting. Repeat screening is helpful every 5 years or at times when the number and size of AVMs increase, such as during puberty or pregnancy. Other tests include chest CT and pulmonary angiography.

Neurological Features

Neurological complications are common. Frequent complaints include headache, dizziness, and seizures. Less common complications include paradoxical embolism with stroke, intraparenchymal or subarachnoid hemorrhage, and meningitis or brain abscess.

Paradoxical embolism via a pulmonary arteriovenous fistula (AVF) leads to cerebral infarction. Rarely, a clot may form within the fistula itself before migrating into the arterial circulation. Intermittent symptoms with subsequent improvement result from repeated small emboli. The cause of transient ischemic attacks during hemoptysis is air embolism from a bleeding pulmonary AVF. Approximately 1% develop cerebral abscess or meningitis, probably because septic microemboli bypass the normal filtration of the pulmonary circulation via a pulmonary AVF.

Vascular anomalies may be found anywhere in the brain, spinal cord, or meninges, and more than one type of lesion may be present in the same patient—making this a diagnosis for consideration in patients with multiple cerebrovascular malformations. Approximately one-fourth of HHT patients are likely to have a cerebral vascular malformation. AVMs, high-flow pial fistulae, and telangiectasias are most common; cavernous malformations, venous angiomas and vein of Galen malformations also occur, but less commonly.

Screening should begin with MRI and MR angiography (MRA) of the brain, although cerebral angiography is most sensitive. Angiography every 5 years with interim surveillance is recommended. MRI is the best procedure for patients with known AVMs.

Hypomelanosis of Ito

Hypomelanosis of Ito (HI) is a heterogeneous and complex neurocutaneous disorder affecting the skin, brain, eye, skeleton, and other organs. Ito named the disorder incontinentia pigmenti achromians, but the present name is hypomelanosis of Ito to avoid confusion with incontinentia pigmenti. It is the third most frequent neurocutaneous disease after NF1 and the tuberous sclerosis complex. HI is usually a sporadic disorder with minimal recurrence risk.

Cutaneous Features

The skin findings are distinctive and in fact are the only constant feature of HI. Hypopigmented whorls, streaks, and patches are present at birth and tend to follow Blaschko lines (Fig. 65.18), pathways demarcating embryonic skin development. In HI, the hypopigmented skin lesions are usually multiple, involve several body segments, and may be unilateral or bilateral. They may be observable at birth but commonly develop in infancy, depending on the degree of skin pigmentation. Woods lamp examination may enable detection of hypopigmented lesions. The degree or distribution of skin depigmentation does not appear to correlate with either the severity of neurological symptoms or associated organ pathology. The hypopigmented lesions follow Blaschko lines in two-thirds of patients and are patchy in others. Other skin findings in patients with HI include café-au-lait spots, cutis marmorata, aplasia cutis, nevus of Ota, trichorrhexis, focal hypertrichosis, and nail dystrophy. Electron microscopy of the hypopigmented lesions consistently shows a marked reduction of melanocytes (Cavallari et al., 1996). In the proximity of preserved melanocytes, the basal keratinocytes contain a nearly normal content of melanosomes. Depigmented areas contain an increased number of Langerhans cells.

Many different cytogenetic anomalies occur in HI. Most patients are mosaic for aneuploidy or unbalanced translocations, with two or more chromosomally distinct cell lines either within the same tissue or between tissues. Genetic alterations in HI include ring chromosome 22, mosaic trisomy 18, 18/X translocation, and others. Mosaicism for sex chromosome aneuploidy also occurs. Many individuals have normal lymphocyte karyotypes, but it is important to recognize that mosaicism may be tissue specific, so karyotype abnormalities may be demonstrable in fibroblasts but not in lymphocytes.

Incontinentia Pigmenti

Incontinentia pigmenti (IP) is a rare X-linked dominant condition affecting the skin, eyes, and CNS. Skeletal and dental anomalies are common and variable. A transitory leukocytosis (predominantly eosinophilic) of uncertain clinical significance can occur. Skin biopsy was instrumental in making the diagnosis in the past, but now gene testing is widely available. Skin biopsy from hyperpigmented regions shows free melanin granules in the dermis.

Cutaneous Features

The skin manifestations are characteristic. Skin abnormalities progress in stages any time from the newborn period to adulthood. The duration of each stage is variable and may overlap with other stages. The lesions typically evolve from blister (stage 1) to verrucous (stage 2) to linear and pigmented (stage 3) and finally to atrophic and hypopigmented (stage 4). Skin lesions develop along Blaschko lines. The blister or bullous stage often presents in the neonatal period and is often evaluated as an infectious process. Verrucous transformation is most typical during infancy, and abnormalities of the nails and teeth as they erupt become notable. The hyperpigmented stage is prominent in childhood and adulthood but begins to fade in the second or third decade. The hypopigmented or atretic stage may demonstrate loss of normal hair and subcutaneous structures in addition to or aside from changes in coloration. Not all stages occur in all individuals, especially the hypopigmented stage.

Abnormalities of hair include alopecia in areas that may have been previously affected or unaffected by skin pigmentation changes. Scalp hair may be thin or coarse. Abnormalities of eyebrows may be present as well. Nails may be brittle or demonstrate pits; these findings may wax and wane and raise concern for fungal infection. Tooth abnormalities may include abnormal shape or malpositioning.

IP carries an increased risk of retinal detachment. This is most likely to occur in early childhood and is rare after 6 years of age. Dilated funduscopic examination demonstrates retinal neovascularization as a precursor to detachment. Frequent surveillance ophthalmological examination is important, especially early in life, and may be helpful in making the diagnosis in at-risk family members not otherwise symptomatic.

Genetics

Transmission is X-linked dominant, and nuclear factor kappa B (NF-κB) essential modulator (NEMO) is the causative gene. Deletion in exons 4 to 10 is the responsible mutation in 80% to 90% of patients (Nelson, 2006). This protein is involved in prevention of apoptosis. The mutation is expected to be lethal in males; however, males with somatic mosaicism or an additional X chromosome, as in Klinefelter syndrome, have survived. These individuals demonstrate immunodeficiency and ectodermal dysplasia rather than the characteristic skin findings described.

Ataxia-Telangiectasia

Ataxia-telangiectasia (AT) is a neurodegenerative disorder that begins in early childhood as a slowly progressive ataxia. Telangiectasias (dilated small blood vessels), immunodeficiency, and cellular sensitivity to ionizing radiation develop later. The distinctive skin lesions predominantly involve the sclerae, earlobes, and bridge of the nose, with less common involvement of the eyelids, neck, and antecubital and popliteal fossae. The combination of these telangiectasias in a child with progressive ataxia is pathognomonic for AT. The most striking non-neurological feature of AT is an increased frequency of sinopulmonary infections and a dramatically increased risk for malignancy of the lymphoreticular system, especially leukemia and lymphoma. The estimated prevalence of AT, an autosomal recessive disorder, ranges from 1 in 40,000 to 1 in 100,000. The gene frequency is as high as 1% in the general population.

Neurological Features

Ataxia, the first manifestation of AT, appears when the child learns to walk in the second year of life. Truncal ataxia predominates early in the course of the disorder, affecting sitting, balance, and gait. Muscle strength is normal, and attainment of early gross motor milestones is usually on time. The ataxia is slowly progressive, and children typically require a wheelchair by the age of 12 years. As the child matures, limb ataxia, intention tremor, and segmental myoclonus become apparent. Choreoathetosis may be difficult to distinguish from dysmetria and intention tremor, but it may dominate the clinical picture in older children. At times, the choreoathetosis may resemble segmental myoclonus of the limbs or trunk. Progressive dystonia of the fingers may appear in the second and third decades of life. Axial muscles are affected, and a stooped posture gradually develops. Progressive dysarthria is present. (See also Chapter 72.)

Abnormal eye movements are nearly universal in children with AT. Voluntary ocular motility is impaired; nystagmus and apraxias of voluntary gaze such as disorders of smooth pursuit and limitation of upgaze are the most common abnormalities. Oculomotor apraxia may precede appearance of the telangiectasias but is often misidentified as an attention-seeking behavior. Strabismus is seen in many young children with AT, but it is often transitory and does not warrant corrective surgery.

In adult patients with AT, the neurological features include progressive distal muscular atrophy and fasciculations, with relative preservation of proximal strength. The gradual loss of vibration and position sense indicates involvement of the spinal cord dorsal columns, and neuropathological and electrophysiological studies reveal a primarily axonal peripheral polyneuropathy.

Serial brain imaging in older children and adults shows nonprogressive cerebellar atrophy. Autopsy studies confirm the radiographical impression of cerebellar degeneration, with reduced numbers of Purkinje cells, granular and basket cells of the cortex, and neurons in the nuclei of the vermis. Degenerative changes are more extensive in adults, involving the substantia nigra, brainstem nuclei, and spinal cord. Relative sparing of the cerebral cortex decreases significant neuropsychological deficits.

Laboratory Diagnosis

Useful laboratory tests in the diagnosis of AT include serum α-fetoprotein, immunoglobulins, and cellular radiosensitivity tests. Nearly all patients with AT have an elevated α-fetoprotein level, which is utilized as a screening diagnostic test. Approximately 80% have decreased serum immunoglobulin (Ig)A, IgE, or IgG, especially the IgG2 subclass. Characteristic cellular features are reduced lifespan in culture, cytoskeletal abnormalities, chromosomal instability, hypersensitivity to ionizing radiation and radiomimetic agents, defective radiation-induced checkpoints at the G1, S, and G2 phases of the cell cycle, and defects in signal transduction pathways (Rotman and Shiloh, 1997).

The gene associated with AT (ATM) is a large gene located at chromosome 11q22-23, and more than 100 ATM mutations occur widespread throughout the ATM gene. Although the function of the ATM gene product is not clear, it belongs to a family of large proteins involved in cell cycle progression and checkpoint response to DNA damage. One postulation is that oxidative stress specifically activates ATM by initiating signal transduction pathways responsible for protecting cells from such insults. Thus, the production of reactive oxygen species by ionizing radiation may play an important role in mutagenesis in cells with absent or abnormal ATM.

The high risk of malignancy in AT underscores the importance of early diagnosis in affected individuals and subsequent routine surveillance for leukemia and lymphoma. Treatment of the neurological deficits is symptomatic at present. Whether neuroprotective medications or medications that modulate neuronal growth factors can slow neurodegeneration in AT is unknown. Treatment options include vitamin E, α-lipoic acid, and folic acid for their theoretical reduction in chromosomal breaks and subsequent translocations or inversions. Genetic counseling and prenatal diagnosis are available.

Epidermal Nevus Syndrome

The term epidermal nevus syndrome (ENS) encompasses several disorders that have in common an epidermal nevus and neurological manifestations such as seizures or hemimegalencephaly. The syndrome name represents the predominant cell type of the nevus; for example, nevus verrucosus (keratinocytes), nevus comedonicus (hair follicles), and nevus sebaceous (sebaceous glands). Several subtypes of ENS exist and should be differentiated from one another: nevus sebaceous syndrome (Schimmelpenning-Feuerstein-Mims syndrome), Proteus syndrome, CHILD (congenital hemidysplasia with ichthyosiform nevus and limb defects) syndrome, Becker nevus associated with extracutaneous involvement (pigmented hairy epidermal nevus syndrome), nevus comedonicus syndrome, and phakomatosis pigmentokeratotica (Happle, 1995). Terms such as Schimmelpenning syndrome, organoid nevus syndrome, and Jadassohn nevus phakomatosis describe combinations of neurological findings and sebaceous nevi. It is probably best to consider ENS a heterogeneous group of disorders characterized by epidermal and adnexal hamartomas and other organ system involvement.

Neurocutaneous Melanosis

Neurocutaneous melanosis (NCM) is a congenital disorder of melanotic cell development that involves the CNS, especially the leptomeninges. Congenital melanocytic nevi may occur without CNS involvement, and conversely, melanin is found normally in the CNS in the absence of congenital nevi. NCM is apparently not hereditary and affects male and female subjects with equal frequency. The incidence of NCM is unknown, but it is very uncommon, with only 100 to 200 cases reported in the literature.

Although the precise pathogenesis is not well understood, a disorder involving neural crest cell differentiation and melanocyte embryogenesis is suspected. The prominent involvement of the leptomeninges and skin over the spine supports the suggestion that the primary defect is abnormal migration of nevus cell precursors, although the embryological origin of nevus cells has not been determined. Alternatively, melanin-producing cells may be produced in excessive numbers. It has also been speculated that nevi located over the spine result from an error early in nevus cell migration or differentiation, whereas nevi are restricted to the extremities if the error occurs later in development (Pavlidou et al., 2008).

Cutaneous Features

The characteristic lesions are dark to light brown hairy nevi present at birth (Fig. 65.19). Multiple small nevi (satellite nevi) usually are present around one giant nevus that most commonly appears on the lower trunk and perineal area (swimming trunk nevus). A giant nevus is absent in 34% of patients with NCM. Approximately one-third of patients have a large nevus over the upper back (cape nevus). The giant nevi may fade over time, but satellite nevi continue to appear during the first few years of life.

Diagnostic criteria for NCM have been suggested: (1) large or multiple (three or more) congenital nevi (large is ≥ 20 cm in an adult, 9 cm on the scalp of an infant, or 6 cm on the body of an infant); (2) no evidence of cutaneous melanoma except in patients in whom the examined portions of the meningeal lesions are benign; and (3) no evidence of meningeal melanoma except in patients in whom the examined areas of the cutaneous lesions are benign. Some authors argue that a definitive diagnosis of NCM requires histological confirmation of the CNS lesions. However, in the context of the typical melanocytic cutaneous nevi and characteristic neuroimaging findings, leptomeningeal or brain biopsy is unnecessary.

Biopsy of a congenital nevus reveals extension of the nevus cells into the deep dermis or even the subcutis between collagen bundles and around nerves, hair follicles, and blood vessels. Nevus cells tend to form cords or nests. Sheets of nevomelanocytes in the dermis may display a few mitoses and large atypical cells positive for S100 and HMB45 antibodies and formaldehyde-induced green-specific fluorescence. The occurrence of atypical mitoses in the dermis may constitute an early stage of malignant melanoma (Sasaki et al., 1996). The greatest risks in NCM are the high incidence of malignant transformation of melanotic cells and spinal and intracranial pathology.

Neurological Features

Neurological symptoms may result from leptomeningeal melanosis, intracranial melanoma, or intracerebral or subarachnoid hemorrhage. Malformations of the vertebral column, spine, and brain also may impair neurological function. The median age of neurological complications is 2 years, but infants may be affected (DeDavid et al., 1996). Leptomeningeal melanosis is probably the most common cause of neurological symptoms, especially in children. This tends to occur at the base of the brain along the interpeduncular fossa, ventral brainstem, upper cervical cord, and ventral surface of the lumbosacral cord. Marked leptomeningeal melanosis (Fig. 65.20) is present in the vast majority of patients with NCM and associated with interruption of cerebrospinal fluid (CSF) flow. This leads to hydrocephalus and increased intracranial pressure with typical symptoms of irritability, vomiting, seizures, and papilledema. In infants, symptoms may include rapidly increasing head circumference or tense anterior fontanel. Cranial nerve deficits such as limitation of upgaze and lateral gaze are common. Myelopathy occurs when leptomeningeal proliferation affects the spinal cord or spinal nerves.

The likelihood of symptomatic neurological involvement correlates with location of large nevi. Large congenital melanocytic nevi occur on the back in nearly 80% of patients. In one series, all 33 patients with neurological symptoms had a nevus over the back, whereas none of 26 patients with nevi restricted to the limbs had neurological abnormalities. Patients occur with leptomeningeal melanosis confirmed by biopsy and CNS involvement but without skin lesions.

Neuroimaging

Approximately half of neurologically asymptomatic children with NCM have abnormal cranial neuroimaging study results. Cranial MRI demonstrates lesions with T1 shortening in the cerebellum, in the anterior temporal lobe (especially the amygdala), and along the basilar meninges (Fig. 65.21). Some of these lesions also show T2 shortening. The pons, medulla, thalami, and base of the frontal lobe often are affected. Gadolinium-enhanced MRIs rarely may show enhancement of the pia-arachnoid. In one study, all five children with neurological symptoms of increased intracranial pressure showed leptomeningeal thickening and enhancement. Conversely, asymptomatic children never showed leptomeningeal thickening. Inferior vermian hypoplasia and Dandy-Walker malformation have been reported. Spinal MRI study results are usually normal.

It may be difficult to distinguish radiological evidence of CNS melanoma from benign melanin deposits. Serial imaging studies are the best way to follow clinically suspect MRI lesions. Certain neuroimaging findings help distinguish benign intracranial melanosis from melanoma; necrosis, perilesional edema, contrast enhancement, and hemorrhage are features of melanoma. Unfortunately, melanoma may not exhibit any of these findings until late in its course when metastasis is likely to have already occurred.

Ehlers-Danlos Syndrome

At least 10 subtypes of Ehlers-Danlos syndrome (EDS) exist, defined by the clinical features, inheritance pattern, and even specific molecular defects. Together these syndromes are characterized by fragile or hyperelastic skin (Fig. 65.22), hyperextensible joints, vascular lesions, easy bruising, poor wound healing, and excessive scarring. Some patients develop peripheral neuropathy caused by lax ligaments, and others may present with neonatal hypotonia or weakness. Neuromuscular kyphoscoliosis can develop. However, vascular lesions such as aneurysm (Fig. 65.23) and arterial dissection are the most serious threat to the nervous system. (See also Chapter 51A.)

image

Fig. 65.22 Cutaneous hyperelasticity of the anterior chest in a patient with Ehlers-Danlos syndrome without cerebrovascular disease.

(Reprinted with permission from Roach E.S., 1989. Congenital cutaneovascular syndromes, In: Vinken, P.V., Bruyn, G.W., Klawans, H.L. (Eds.), Handbook of Clinical Neurology, vol. 11, Vascular Diseases. Elsevier, Amsterdam, pp. 443-462.)

More than 80% of EDS patients have type I, II, or III, and the other subtypes are individually uncommon. Type IV most often leads to neurovascular complications, and its prevalence is 1 in 50,000 to 500,000. Often, a delay in the diagnosis of type IV EDS occurs because of a decreased incidence of hyperelastic skin or hyperextensible joints compared to other types. Transmission of all familial type IV EDS cases with a documented abnormality of type III collagen is autosomal dominant. Various defects of the COL3A1 gene (which codes for the α1 chain of type III collagen) on chromosome 2 have been identified (Schwartze et al., 1997). Mutations of this gene are rare in patients with aneurysm without EDS type IV (Hamano et al., 1998).

Neurovascular Features

There is a risk of aneurysms, and the most commonly affected intracranial vessel is the internal carotid artery, typically in or just beyond the cavernous sinus. Rupture of the aneurysm can occur spontaneously or during vigorous activity. Rupture within the cavernous sinus may create a carotid-cavernous fistula. Less often, the aneurysm occurs in other intracranial arteries and presents with subarachnoid hemorrhage. Most individuals become symptomatic in early adulthood, but some begin in childhood and adolescence.

Some patients develop a fistula after minor head trauma, but most occur spontaneously and even without an aneurysm. Clinical features of carotid-cavernous fistula include proptosis, chemosis, diplopia, and pulsatile tinnitus. The vascular fragility of type IV EDS makes both standard angiography and intravascular occlusion of the fistula difficult.

Arterial dissection occurs in both intracranial and extracranial arteries, and the initial features depend primarily on which artery is affected. One patient with a vertebral dissection developed a painful pulsatile mass of the neck. Dissection of an intrathoracic artery secondarily can occlude cervical vessels, and distal embolism from a dissection can cause cerebral infarction. Surgery is difficult because the arteries are friable and difficult to suture, and handling the tissue leads to tears of the artery or separation of the arterial layers. EDS IV should be considered in children and young adults with arterial dissection.

Cerebrotendinous Xanthomatosis

Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive disorder of bile acid synthesis characterized by tendon xanthomas, cataracts, and progressive neurological deterioration (Box 65.4). The underlying defect consists of the enzyme, sterol 27-hydroxylase, whose gene (CYP27A1) is located on chromosome 2q. The enzyme deficiency leads to deposits of cholesterol and cholestanol, a metabolic derivative of cholesterol, in virtually every tissue, particularly the Achilles tendons, brain, and lungs. Bile acid production decreases markedly, which leads to reduced chenodeoxycholic acid (CDCA) concentration in bile. Excretion of bile acid precursors increases in bile and urine. Serum cholesterol levels are typically not elevated in CTX syndrome.

Neurological Features

Personality changes and decline in school performance may be the earliest neurological manifestations of this syndrome. Progressive loss of cognitive function typically begins in childhood, but some patients remain intellectually normal for many years. EEG shows nonspecific characteristics of metabolic encephalopathy such as slowing. Seizures may occur. Ataxia with gait disturbance, dysmetria, nystagmus, and dysarthria are common. Psychosis with auditory hallucinations, paranoid ideation, and catatonia occur rarely, but examination for cataracts and tendon xanthomas should be included in the evaluation of patients with new-onset psychosis. Parkinsonism may be the only neurological symptom. Cranial MRI typically shows involvement of the dentate nuclei (Gallus et al., 2006). Other findings include cerebral and cerebellar atrophy and diffusely abnormal white matter, presumably reflecting sterol infiltration with demyelination. Focal lesions of the cerebral white matter and globus pallidus are sometimes demonstrable on MRI.

Peripheral neuropathy is a prominent feature of CTX, with signs of pes cavus, areflexia, and loss of vibration perception. Sural nerve biopsy may show reduced densities of both myelinated and unmyelinated axons, and teased fibers show axonal regeneration and remyelination. Large-diameter myelinated nerve fibers particularly are affected. Schwann cells contain foamy macrophages and lipid droplets. Short-latency somatosensory evoked potentials may show prolonged central conduction times with tibial nerve stimulation, but normal conduction velocities with median nerve stimulation. Brainstem auditory evoked potentials and visual evoked potentials are abnormal in approximately half of patients studied. These electrophysiological parameters correlate with the ratio of serum cholestanol to cholesterol concentration and may improve with treatment with CDCA.

Progressive Facial Hemiatrophy

Progressive facial hemiatrophy (Parry-Romberg syndrome) occurs sporadically. The relationship of this disorder to coup de sabre, morphea, and linear scleroderma still is debated (Peterson et al., 1996). Traditionally, progressive facial hemiatrophy involves the upper cranium, whereas coup de sabre tends to affect the lower face as well. Scleroderma and morphea affect other parts of the body. However, understanding of pathogenesis is poor, and they may prove to have a similar origin. An arbitrary distinction based on the anatomical distribution does have at least one practical use: as a rule, only patients whose upper face and head are affected are likely to develop cerebral complications.

Kinky Hair Syndrome (Menkes Disease)

Kinky hair syndrome, also known as Menkes disease or trichopoliodystrophy, is an X-linked recessive disorder of connective tissue and neuronal metabolism caused by inborn disorders of copper metabolism, namely impaired cellular export of copper leading to accumulation in all tissues except the liver and brain. The estimated frequency is 1 in 40,000 to 1 in 298,000 live births. In the classic form of kinky hair syndrome, the neurological symptoms begin in the first year of life, and the course is rapidly progressive, with death by the third year of life in more involved cases. Cause of death commonly relates to infection, cerebrovascular complications, or the neurodegenerative process. Documented cases of late-onset cases and apparently asymptomatic individuals are in the literature. The basis for diagnosis in a few affected females was a low copper content in liver and high copper content in an intestinal biopsy sample. Clinical features in these girls were similar to but milder than those seen in typical neonatal-onset cases. Genetic analysis revealed inactivation of the normal X chromosome. (See also Chapter 62.)

Other Clinical Features

Kinky hair syndrome covers a clinical continuum from nearly normal to the severe classic infantile-onset form (Box 65.5). Newborns may be more prone to cephalohematomas or spontaneous bone fractures and develop temperature instability, diarrhea, and failure to thrive in early infancy. Sympathetic adrenergic dysfunction, including hypotension, hypothermia, anorexia, and somnolence, is attributable to the impairment of dopamine β-hydroxylase that requires copper for the synthesis of norepinephrine and other neurotransmitters.

One mild allelic variant of kinky hair syndrome is the occipital horn syndrome (also known as type IX Ehlers-Danlos or X-linked cutis laxa) in which connective tissue symptoms predominate, and cognitive and motor involvement is variable. This disorder is named for the characteristic exostoses (“orbital horns”) resulting from calcification of the trapezius and sternocleidomastoid muscles at their attachment to the occipital skull.

Diagnosis and Treatment

When suspected clinically, low serum copper and ceruloplasmin support the diagnosis. Plasma catecholamine analysis to evaluate for dopamine β-hydroxylase deficiency also may be helpful. Specialized centers can determine intracellular accumulation of copper. The large size of the ATP7A gene and the variety of mutations make detection of a specific genetic defect difficult, unless previously established for a given family. Carrier status is difficult to assess, although prenatal testing for copper content in chorionic villi or cultured amniotic-fluid cells is available.

The focus of treatment approaches is to restore copper to normal levels in brain and other tissues. Careful medical care is particularly important in extending the lifespan. Copper-histidine administered parenterally (subcutaneously) is the most promising treatment, and substantial clinical improvement in a small number of patients has been reported. Undoubtedly, response to copper-histidine treatment partly depends on the specific mutation of ATP7A involved. Such correlations are only now beginning.

Aggressive copper replacement beginning in early infancy may be necessary to significantly improve neurological outcome. Replacement therapy does not appear to help the connective tissue abnormalities in kinky hair syndrome. Preservation of some residual activity of adenosine triphosphatase (ATPase) may be required for significant clinical efficacy from copper replacement treatment, since it did not normalize neurological outcome in two children with the Q724H splicing mutation, which yields a nonfunctioning ATPase.

Xeroderma Pigmentosum

Xeroderma pigmentosum (XP) is a group of uncommon neurocutaneous disorders characterized by susceptibility to sun-induced skin disorders and variable (but typically progressive) neurological deterioration. Inheritance of XP is autosomal recessive, often in the setting of parental consanguinity, and occurs in 1 in 30,000 to 1 in 250,000 or higher. It occurs more frequently in Japan and Egypt than in the United States and Europe. Several gene mutations involving nucleotide excision repair and DNA transcription have been associated with XP and related syndromes such as Cockayne syndrome, trichothiodystrophy, and De Sanctis-Cacchione syndrome.

Complementation Groups

Complementation analysis has been important in understanding the genetic basis of XP. If two particular cell types with different metabolic abnormalities are fused, the cell produced may function normally. These two cell types have different complementation groups and presumably have a different genetic basis. In XP, eight complementation groups have been identified (XP-A through XP-G and a variant group). Although some general genotype-phenotype correlations among these complementation groups exist, considerable clinical overlap exists between them (Copeland et al., 1997). Complementation groups XP-A, XP-C, and XP-D are the most common. Despite the few individuals with XP-B available, cloning of the responsible gene (XPBC) was successful. The XPBC gene is located on chromosome 2q21 and encodes a protein that is a component of the basal transcription factor, TFIIH/BTF2. This protein helps regulate both DNA transcription initiation and nucleotide excision repair.

Mutations in the XPCC gene, located on chromosome 3p25.1, cause XP-C. Patients with XP-C generally do not have prominent neurological dysfunction. The XPCC gene codes for a protein involved in global genome repair, but full understanding of its exact role is lacking. Complementation group D is the third most common complementation group. Characteristic of the abnormalities are mild to severe neurological dysfunction. The gene associated with XP-D is at chromosome 9q13. The gene product in XP-D is a component of TFFIIH/BTF2, as is XP-B, and accordingly, XP-B and XP-D have similar clinical features. Complementation group E (XP-E) is uncommon and associated with mild neurological and cutaneous symptoms. The precise localization and function of the XP-E gene of its associated protein, XPEC, has not been determined. No neurological symptoms occur in patients from complementation groups F or G or the variant group.

Related Syndromes

De Sanctis-Cacchione syndrome is a variant of XP in which patients have severe and progressive cognitive deficiency, dwarfism, and gonadal hypoplasia. Trichothiodystrophy and similar syndromes link to XP complementation groups B and D. Patients with trichothiodystrophy have brittle hair and nails because of sulfur-deficient matrix proteins, ichthyosis, and mental retardation. Patients with photosensitivity (P), ichthyosis (I), brittle hair (B), impaired intelligence (I), possibly decreased fertility (D), and short stature (S) fit into the PIBI(D)S syndrome. DNA repair studies of patients with trichothiodystrophy demonstrate reduced ultraviolet-induced DNA repair synthesis, and one patient assigned to XP-D. A variant of trichothiodystrophy is Tay syndrome, in which dysplastic nails and lack of subcutaneous fatty tissue are characteristic. Low birth weight, short stature, and mental retardation are also features of this disorder.

Cockayne syndrome combines cutaneous sunlight sensitivity, dwarfism, mental retardation, microcephaly, dental caries, peripheral neuropathy, and sensorineural deafness. The combined features of XP and Cockayne syndrome within complementation groups XP-B, XP-D, and XP-G indicate that there is considerable clinical heterogeneity and phenotypical overlap within the subsets of these complementation groups. Trichothiodystrophy may present with congenital ichthyosis (collodion baby) but persistent ichthyosis of the scalp, trunk, palms, and soles are the main features.

Cutaneous and Ocular Features

Cutaneous and ocular features of XP result primarily from ultraviolet light exposure (Box 65.6). The onset of cutaneous symptoms in XP is usually early; the median age of onset is 1 to 2 years, typically freckling or erythema and bullae formation after sun exposure. Nearly half of patients develop malignant skin lesions, with the median age of first skin neoplasm being only 8 years. The estimated incidence of basal cell carcinoma or squamous cell carcinoma is 4800 times greater than that observed for the general U.S. population. Light-skinned infants develop erythema and bullae after even brief sun exposure. Sun exposure also induces prominent macule formation (freckling or solar lentigenes), which over time enlarge and coalesce. Telangiectasias and epidermal and dermal atrophy develop in later years, and the skin becomes dry. Actinic keratosis, angiomas, keratoacanthomas, and fibromas also occur. Ocular tissues are particularly susceptible to ultraviolet damage. Keratitis and conjunctivitis with photophobia are common in patients with XP. Atrophy of the eyelids leads to loss of lashes and ectropion or entropion. Neoplasms of the eyelid, conjunctiva, and cornea include squamous cell carcinoma, epithelioma and basal cell carcinoma, and melanoma. The tip of the tongue, gingiva, and palate also are susceptible to sun exposure.

Most of what is known about the neurological features in XP comes from studies of Japanese patients with XP-A. Research indicates that the severity of neurological symptoms correlates with particular mutations within the XPAC gene, and presumably this is true in other types of XP (Maeda et al., 1995). The principal neurological symptoms in XP-A are progressive dementia, sensorineural hearing loss, tremor, choreoathetosis, and ataxia. Progressive dementia begins in patients with XP-A during the preschool years, and IQ scores after 10 years of age are invariably less than 50. Sensorineural hearing loss has a later onset, but most patients older than 10 years have hearing impairment. Cerebellar signs develop at approximately the same time as the hearing loss. Microcephaly is present in about half of patients.

EEG studies most often show nonspecific generalized slowing, but focal slow waves and focal spike discharges occasionally occur. Peripheral neuropathy is a prominent feature that may begin in the first decade of life. Deep tendon reflexes are absent in nearly all patients older than 6 years. Motor nerve conduction velocities are normal during the first 3 years of life but slow by 6 years. Similarly, all patients older than 6 years had either absent or prolonged sensory nerve conduction velocities. Electromyography shows a neuropathic pattern with large, prolonged, polyphasic motor unit potentials and incomplete recruitment of motor units. Nerve biopsy may show an age-dependent decrease of myelinated fibers, which was associated with rare acute axonal degeneration, sparse axonal regeneration, rare axonal atrophy, and few onion bulb formations, consistent with a neuropathic process.

Neural tissue lacks exposure to sun-induced DNA damage. Therefore, the cause of neurodegeneration in patients with XP remains unexplained. The high frequency of neurological symptoms in XP-B and XP-D but not in XP-C, XP-D, XP-G, and the variant group supports the notion that one cause of the neurological dysfunction in XP is dysfunction of DNA transcription rather than nucleotide excision repair. Deficits in excision repair may closely link to skin cancer susceptibility. In addition, recent work suggests that in XP, the cause of neurological injury is partly defective repair of lesions produced in nerve cells by reactive oxygen species generated as byproducts of an active oxidative metabolism. Specifically, two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts.

Treatment

Cancer surveillance and avoidance of precipitating factors is the most important aspect of health screening of individuals with XP. Optimism exists for genetic therapy to reduce cancer risk and perhaps improve neurological outcomes. In vitro studies offer hope that eventually, recombinant retroviruses can transfer and stably express the human DNA repair genes in XP cells to correct defective DNA repair (Zeng et al., 1997). Using the recombinant retroviral vector, LXSN, successful transfer of human XP-A, XP-B, and XP-C complementary DNAs (cDNAs) into primary and immortalized fibroblasts obtained from patients with XP-A, XP-B, and XP-C occurred. After transduction, monitoring of the complete correction of DNA repair deficiency and functional expression of the transgenes included ultraviolet survival, unscheduled DNA synthesis, and recovery of RNA synthesis. In a similar study, cloning of XP-F cDNA into a mammalian expression vector plasmid and introduced into group F XP (XP-F) cells. The XP-FR2 cells expressed a high level of XP-F protein and ERCC1 protein. They showed ultraviolet resistance comparable to that in normal human cells and had normal levels of ultraviolet-induced unscheduled DNA synthesis and normal capability to remove DNA adducts. This demonstrates that the nucleotide excision repair defect in XP-F cells is fully corrected by overexpression of XP-F cDNA alone.

Other Neurological Conditions with Cutaneous Manifestations

Many other conditions with cutaneous stigmata also manifest neurological symptoms primarily or secondarily. Fabry disease is an X-linked lysosomal disorder with prominent cutaneous angiokeratoma corporis diffusum, sensory neuropathy, and risk of stroke (see Chapters 51A and 76). A connective tissue disorder known as pseudoxanthoma elasticum demonstrates characteristic skin plaques, and vascular involvement leads to cerebrovascular compromise (see Chapter 51A). Wyburn-Mason syndrome (or Bonnet-Dechaume-Blanc syndrome) is a rare sporadic neurocutaneous syndrome characterized by retinal, facial, and intracranial AVMs.

References

Au K.S., Williams A.T., Roach E.S., et al. Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med. 2007;9:88-100.

Bodensteiner J., Roach E.S. Sturge-Weber Syndrome, second ed. Mt. Freedom, NJ: Sturge-Weber Foundation; 2010.

Bourgeois M., Crimmins D., de Oliviera R.S., et al. Surgical treatment of epilepsy in Sturge-Weber syndrome in children. J Neurosurg. 2007;106:20-28.

Butman J.A., Linehan W.M., Lonser R.R. Neurologic manifestations of von Hippel-Lindau disease. JAMA. 2008;300:1334-1342.

Cavallari V., Ussia A.F., Siragusa M., et al. Hypomelanosis of Ito: electron microscopical observations on two new cases. J Dermatol Sci. 1996;13:87-92.

Chen F., Kishida T., Yao M., et al. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat. 1995;5:66-75.

Clarkson P.E., Cookson M.S. The von Hippel Lindau gene: turning discovery into therapy. Cancer. 2008;113:1768-1778.

Copeland N.E., Hanke C.W., Michalak J.A. The molecular basis of xeroderma pigmentosum. Dermatol Surg. 1997;23:447-455.

DeDavid M., Orlow S.J., Provost N., et al. Neurocutaneous melanosis: clinical features of large congenital melanocytic nevi in patients with manifest central nervous system melanosis. J Am Acad Dermatol. 1996;35:529-538.

de Vries P.J. Neurodevelopmental, psychiatric and cognitive aspects of tuberous sclerosis complex. In: Kwiatkowski D.J., Whittemore V.H., Thiele E.A. Tuberous Sclerosis Complex: Genes, Clinical Feature, and Therapeutics. Weinheim: Wiley-VCH Verlag GmbH & Co.; 2010:229-267.

Evans D.G. Neurofibromatosis type 2. In: Roach E.S., Miller V.S. Neurocutaneous Syndromes. London: Cambridge University Press; 2004:50-59.

Ewalt D.H., Diamond N., Rees C., et al. Long-term outcome of transcatheter embolization of renal angiomyolipomas due to tuberous sclerosis complex. J Urol. 2005;174:1764-1766.

Faughnan M.E., Palda V.A., Garcia-Tsao G., et al. International guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. J Med Genet. 2011;48:73-87.

Franz D.N., Leonard J., Tudor C., et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59:490-498.

Gallus G.N., Dotti M.T., Federico A. Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene. Neurol Sci. 2006;27:143-149.

Hamano K., Kuga T., Takahashi M., et al. The lack of type III collagen in patients with aneurysms and an aortic dissection. J Vasc Surg. 1998;28:1104-1106.

Happle R. Epidermal nevus syndrome. Semin Dermatol. 1995;14:111-121.

James M.F., Han S., Polizzano C., et al. NF2/Merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol. 2009;29:4250-4261.

Kim O.H., Suh J.H. Intracranial and extracranial MR angiography in Menkes disease. Pediatr Radiol. 1997;27:782-784.

Maeda T., Sato K., Minami H., et al. Chronological difference in walking impairment among Japanese group A xeroderma pigmentosum (XP-A) patients with various combinations of mutation sites. Clin Genet. 1995;48:225-231.

Maria B.L., Neufeld J.A., Rosainz L.C., et al. High prevalence of bihemispheric structural and functional defects in Sturge-Weber syndrome. J Child Neurol. 1998;13:595-605.

Needle M.N., Cnaan A., Dattilo J., et al. Prognostic signs in the surgical management of plexiform neurofibroma: the Children’s Hospital of Philadelphia experience, 1974-1994. J Pediatr. 1997;131:678-682.

Nehal K.S., PeBenito R., Orlow S.J. Analysis of 54 cases of hypopigmentation and hyperpigmentation along the lines of Blaschko. Arch Dermatol. 1996;132:1167-1170.

Nelson D.L. NEMO, NFκB signaling and incontinentia pigmenti. Curr Opin Genet Dev. 2006;16:282-288.

Pavlidou E., Ahgel C., Papavasillou A., et al. Neurocutaneous melanosis: report of 3 cases and up-to-date review. J Child Neurol. 2008;12:1382-1391.

Peterson L.S., Nelson A.M., Su W.P. Classification of morphea (localized scleroderma). Mayo Clin Proc. 1996;70:1068-1076.

Roach E.S., Sparagana S.P. Diagnosis of tuberous sclerosis complex. J Child Neurol. 2004;19:463-469.

Rotman G., Shiloh Y. The ATM gene and protein: possible roles in genome surveillance, checkpoint controls and cellular defense against oxidative stress. Cancer Surv. 1997;29:285-304.

Sancak O., Nellist M., Goedbloed M., et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype-phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet. 2005;13:731-741.

Sasaki Y., Kobayashi S., Shimizu H., et al. Multiple nodular lesions seen in a patient with neurocutaneous melanosis. J Dermatol. 1996;23:828-831.

Schwartze U., Goldstein J.A., Byers P.H. Splicing defects in the COL3A1 gene: marked preference for 5’ (donor) splice-site mutations in patients with exon-skipping mutations and Ehlers- Danlos syndrome type IV. Am J Hum Genet. 1997;61:1276-1286.

Tumer Z., Horn N. Menkes disease: recent advances and new aspects. J Med Genet. 1997;34:265-274.

Zeng L., Quilliet X., Chevallier-Lagente O., et al. Retrovirus-mediated gene transfer corrects DNA repair defect of xeroderma pigmentosum cells of complementation groups A, B and C. Gene Ther. 1997;4:1077-1084.