Brain

Published on 12/06/2015 by admin

Filed under Radiology

Last modified 22/04/2025

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 0 (0 votes)

This article have been viewed 1561 times

13

Brain

Methods of imaging the brain

Imaging the brain’s structure and examining its physiology, both in the acute and elective setting, are now the domain of multiplanar, computer-assisted imaging. The imaging modalities in use today include the following:

1. Computed tomography (CT). This is the technique of choice for the investigation of serious head injury; for suspected intracranial haemorrhage, stroke, infection and other acute neurological emergencies. CT is quick, efficient and safer to use in the emergency situation than MRI.

2. Magnetic resonance imaging (MRI). This is the best and most versatile imaging modality for the brain, constrained only by availability, patient acceptability, and the logistics and safety of patient handling in emergency situations. New protocols and higher field strength magnets have raised the sensitivity of MRI in epilepsy imaging, acute stroke, aneurysm detection and follow-up post treatment of neoplastic and vascular disorders. It is the only effective way of diagnosing multiple sclerosis.

3. Angiography. This is very important in intracranial haemorrhage (ICH), especially subarachnoid haemorrhage (SAH) and, increasingly, in intra-arterial management of ischaemic stroke. However, with the widespread availability of multi-detector CT scanners, CT angiography (CTA) is now preferentially used in ischaemic stroke, SAH and ICH. Angiography is still requested for pre-operative assessment of tumours, vascular malformations and angiographic expertise is vital for the performance of many neurointerventional procedures.

4. Radionuclide imaging. There are two principal methods. The first is regional cerebral blood flow scanning, still more used in research than in clinical management, especially in the dementias and in movement disorders such as Parkinsonism; second is positron emission tomography (PET). By this method focal hyper-metabolism may be shown using 18F fluorodeoxyglucose (18FDG), for example in epilepsy, and cell turnover may be shown using 11C-methionine, for example in tumour studies.

5. Ultrasound (US). This is particularly helpful in neonates and during the first year of life to image haemorrhagic and ischaemic syndromes, developmental malformations, and hydrocephalus using the fontanelles as acoustic windows. In adults, transcranial Doppler may be used for intracerebral arterial velocity studies to assess the severity of vasospasm.

6. Plain films of the skull. These are of little value except in head injury.

Computed tomography of the brain

Indications

CT is the imaging modality most commonly used in triaging acute neurological disease. For non-emergency indications CT is second best to MR, but is still widely used, often because it is more broadly available and simpler to interpret. The indications include the following:

1. Following major head injury (if the patient has lost consciousness, has impaired consciousness, or has a neurological deficit). The presence of a skull fracture also justifies the use of CT. NICE (National Institute for Health and Care Excellence) guidance has been issued on the use of imaging for head injuries for adults and children, specifically CT, listing the criteria for assessment based on best relevant data and consensus recommendations.

2. In suspected intracranial infection (the use of contrast enhancement is recommended).

3. For suspected intracranial haemorrhage and cases of ischaemic and haemorrhagic stroke.

4. In suspected raised intracranial pressure, and as a precaution before lumbar puncture once certain criteria are fulfilled. These would include reduced consciousness (a Glasgow coma score of less than 15), definite papilloedema, focal neurological deficit, immune suppression and bleeding dyscrasias.

5. In other situations, such as epilepsy, migraine, suspected tumour, demyelination, dementia and psychosis, CT is a poorer-quality tool. If imaging can be justified, MRI is greatly preferable and is recommended by NICE in these situations except for the first episode of psychosis.

Technique

1. Most clinical indications are adequately covered by 3-mm sections parallel to the floor of the anterior cranial fossa, from the foramen magnum to the midbrain, with 7-mm sections to the vertex (or contigious 3-mm slices throughout). In all trauma cases, window width and level should be adjusted to examine bone and any haemorrhagic, space-occupying lesions. Review of all trauma studies should be done on brain windows, bone and ‘blood windows’ (i.e. W175 L75).

2. In suspected infection, tumours, vascular malformations and subacute infarctions, the sections should be repeated following intravenous (i.v.) contrast enhancement, if MR is not available. Standard precautions with regard to possible adverse reactions to contrast medium should be taken.

3. Dynamic studies using iodinated contrast are increasingly being used as a routine in high-velocity head trauma, the assessment of intracerebral bleeding in young patients, aneurysmal SAH, ruptured arteriovenous shunts and dural venous sinus thrombosis. CT angiography (CTA) on a typical 64-slice multidetector scanner is performed using 70–100 ml of contrast and 50 ml saline chaser, injected at 4 ml s−1 with a delay of 15 s or triggered by bolus tracking with ROI in the aortic arch. Overlapping slices of 0.75–1.25 mm are reconstructed. CT venography (CTV) involves injecting 90–100 ml of contrast with a delay of 40 s. Images are usually reviewed both as three-dimensional rendered data and multiplanar reformats (MPRs).

Magnetic resonance imaging of the brain

Technique

1. Long TR sequences. The whole brain can be examined with 4-mm sections with 1-mm interspaces using T2-weighted turbo spin echo imaging. Proton density sequences, long TR and short TE, are used mostly for the assessment of demyelination and intra-articular disc changes in the temporomandibular joints.

2. Short TR sequences. T1-weighted sequences are used for the demonstration of detailed anatomy but gadolinium chelate contrast agents are required to view pathology. Common practice is to obtain a sagittal or coronal T1-weighted sequence as part of a standard brain study. Volumetric sequences pre and post contrast are used for image guidance software interfaces for epilepsy imaging, insertion of deep brain stimulators for movement disorders and the removal of intra- and extra-axial tumours.

3. Gradient-echo T2-weighted sequences and susceptibility weighted imaging. Although suffering from various artifacts, the sensitivity of these sequences to susceptibility effects makes them very sensitive to the presence of blood products, as in cases of previous head injury, SAH and cavernomas. Haemosiderin produces marked focal loss of signal in such cases, and all patients with a history of head injury or other causes of haemorrhage should be imaged with this sequence. These sequences identify abnormal mineral deposition and can be used in deposition disorders.

4. FLAIR sequences (FLuid Attenuated Inversion Recovery) provide very good contrast resolution in the detection of demyelinating plaques and infarcts, and have the advantage that juxta-ventricular pathology contrasts with dark CSF, and is not lost by proximity to the intense brightness of the ventricular CSF, as in spin-echo T2-weighted studies. There are usually obtained in the sagittal or coronal plane.

5. Angiographic sequences. There are many methods, of which ‘time-of flight’ is one of the more commonly used. This is a very short TR, T1-weighted gradient echo three-dimensional sequence, with sequential presaturation of each partition so that only non-presaturated inflowing blood gives a high signal. Image display is by so-called ‘MIP’ or maximum intensity projection, giving a three-dimensional model of the intracranial vessels. As it uses the T1 properties, high signal from blood products in the subarachnoid space may reduce the sensitivity to aneurysms. Phase contrast MR angiography uses velocity encoding flow and is useful to detect flow in small and tortuous vessels. Contrast-enhanced MR angiography requires a pump injector and is less susceptible to flow artifacts. Timing of image acquisition is crucial and it is very useful in neck vessel imaging.

6. Echoplanar or diffusion weighted imaging (DWI). This sequence is becoming widely available on scanners. Most units perform DWI on all patients with suspected stroke, vasculitis, encephalitis, abscesses and in the workup of intracranial tumours. DWI examines the free movement, or Brownian motion, of water molecules at a cellular level. In acute infarcts cytotoxic oedema prevents free movement of water, whereas in tumours there is no restriction. All DWI should be reviewed together with conventional sequences and apparent diffusion coefficient (ADC) maps. Acute infarcts are hyperintense on DWI and hypointense on ADC. DWI is a useful technique in assessment of cholesteatoma both in detecting cholesteatoma if CT is equivocal and is ideal in evaluation of recurrent disease.

Imaging of intracranial haemorrhage

Imaging of suspected intracranial haemorrhage is one of the most common requests, usually in the emergency setting. Follow-up of haematomas and formulating a differential diagnosis can sometimes be quite challenging. In the acute setting, CT and the neurophysiological information available as a result of multidetector technology, is often the first and only modality used to assess these patients. MRI is more often used in situations where the initial workup has been negative and a more sensitive modality is required.

Computed tomography

A conventional study consists of 3-mm sections through the brainstem and posterior fossa, and 7-mm sections through the cerebrum. This is the basic multi-detector CT protocol for brain imaging. This is performed without contrast to avoid diagnostic uncertainty in deciding whether a parenchymal lesion is due to enhancement or blood. Acute blood is typically hyperdense on CT. An exhaustive differential diagnosis for bleeding in different compartments of the brain can be sourced elsewhere but, in general, bleeding can be extra-axial (i.e. epidural, subdural, subarachnoid, intraventricular) or intra-axial. Intra-axial bleeding can be due to head trauma, ruptured aneurysms or arteriovenous malformations, bleeding tumours (either primary disease or secondaries), hypertensive haemorrhages (cortical or striatal) or haemorrhagic transformation of venous or arterial infarcts. In the assessment of subarachnoid haemorrhage and ischaemic stroke CTA is becoming increasingly used as the screening modality for deciding further intervention. Neurosurgeons are increasingly using CTA as the sole modality for planning microsurgical clipping, particularly in the cases where haematoma exerting mass effect needs to be evacuated immediately adjacent to a freshly ruptured intracranial aneurysm. In ischaemic stroke CTA can localize an acute embolus and its source. CT perfusion imaging can demonstrate the ischaemic core (irreversibly damaged brain) by calculating the relative cerebral blood volume and the ischaemic penumbra (recoverable brain parenchyma) by evaluating the relative cerebral blood flow (rCBF).

Magnetic resonance imaging

MRI is predominantly used to exclude the presence of an underlying tumour or a cavernoma at an interval after the initial haemorrhage when there would be less perilesional brain swelling and obscuration of the anatomy due to blood degradation products. It is also used in the setting of subarachnoid bleeding where no aneurysm or arteriovenous malformation is found on CTA or catheter angiography. In these cases the entire neuraxis must be examined to exclude an ‘occult’ source of the haemorrhage. Diffuse axonal shear injuries, in patients with depressed coma scores post head injury, in light of a normal-appearing CT scan, are best demonstrated on MRI with gradient echo imaging or susceptibility weighted imaging looking for susceptibility artifact due to ‘microbleeds’. Where resources are optimal, and MRI is used as part of the initial imaging pathway in ischaemic stroke, MR will help to determine the volumes of brain that can be recovered as well as the presence of early haemorrhage that is not visible on CT which would contraindicate thrombolysis.

Imaging of gliomas

This is an all-encompassing term for a diverse group of primary brain tumours. This includes astrocytomas, oligodendrogliomas, choroid plexus tumours and ependymomas, amongst others. The most commonly presenting tumour, however, is the WHO grade IV astrocytoma or glioblastoma multiforme. Other brain tumours are derived from neuronal cell lines, mixed glial-neuronal cell lines, the pineal gland and embryonal cell lines, peripheral cranial nerves (such as the vestibular schwannoma), meningeal tumours and lymphoma. Appropriate differential diagnoses can be derived from noting the age of the patient, the tumour location (i.e. supra- or infratentorial, cortex or white matter, basal ganglia or brainstem, intra- or extra-axial), its consistency (i.e. cyst formation, mural nodule) and its enhancement characteristics.

Magnetic resonance imaging

MRI is the preferred modality for detailed assessment of brain tumours. In addition to using conventional imaging parameters to assess volume, location and tumour substance in multiple planes, advanced imaging techniques or ‘multi-modality’ imaging can reveal information about tumour grade and biology. Conventional T1 and T2 images are obtained. Diffusion-weighted imaging and diffusion tractography reveals information about tumour substance and effect on white matter tracts in the brainstem and the cerebrum. Multiple lesions, if present, can be better seen on post-contrast MRI, in which case metastatic disease becomes a consideration in the differential diagnosis. As grade IV gliomas can have a similar appearance, a search for a primary epithelial neoplasm elsewhere (for example breast and lung) would be indicated. MR spectroscopy is a technique whereby relative amounts of cell metabolites are detected to reflect the biochemical environment in a tumour. N-acetylaspartate, choline, creatine, lactate and myo-inositol are a few of the major metabolites assessed. Single voxel techniques are preferable using STEAM (stimulated echo acquisition mode) or point resolved spectroscopy (PRESS). Perfusion-weighted imaging can provide information about tumour grade and help to differentiate between tumour recurrence and radiation necrosis. Susceptibility perfusion imaging is most often used where gradient echo images are obtained of the entire brain during the first pass of gadolinium chelate and analysis of the collated data using small regions of interest is carried out looking at normal brain and the tumour. MPRAGE (magnetization-prepared rapid-acquisition gradient echo) volumetric data can also be used post contrast for image guidance for biopsy or tumour debulking.

Imaging of acoustic neuromas

MRI is the definitive diagnostic method. The neurophysiological methods, although quite sensitive, produce a large number of false-positive studies.

Radionuclide imaging of the brain

There are currently two main modalities: regional cerebral blood flow imaging and PET imaging. Thallium imaging is also used in specialist centres for brain tumour assessment and there are niche agents in clinical practice used, for example in the diagnosis of Parkinson’s disease. Conventional radionuclide brain scanning (blood–brain barrier imaging) is rarely used in modern clinical practice.

Regional cerebral blood flow imaging

Radiopharmaceuticals

1. 99mTc-hexamethylpropyleneamineoxime (HMPAO or exametazime), 500 MBq (5 mSv ED). The most commonly used agent, HMPAO is a lipophilic complex that crosses the blood–brain barrier and localizes roughly in proportion to cerebral blood flow. It is rapidly extracted by the brain, reaching a peak of 5–6% of injected activity within a minute or so, with minimal redistribution (about 86% remains in the brain at 24 h).

2. 99mTc-ethyl cysteinate dimer (ECD), 500 MBq (5 mSv ED). This localizes rapidly in proportion to cellular metabolism rather than blood flow, and the distribution has some differences to that of HMPAO, which may need to be taken into consideration for clinical diagnosis.1,2 It currently has the advantage of greater stability than HMPAO and can be used for up to 6 h after reconstitution, which is of particular benefit for ictal epilepsy studies where an injection is only given once a seizure occurs.

Positron emission tomography

Ultrasound of the infant brain

Cerebral angiography

Technique

Catheter flushing solutions should consist of heparinized saline (2500 IU l−1 normal saline). Using standard percutaneous catheter introduction techniques, the femoral artery is catheterized. It is a common practice to deliver an access sheath through which catheters are introduced and exchanged if necessary. There is a wide range of catheters available and there are proponents of many types. In patients up to middle age without major hypertension, there will be little difficulty with any standard catheter and a simple 4F polythene catheter with a slightly curved tip or 45° bend will suffice in the majority. Older patients and those with atherosclerotic disease may need catheters offering greater torque control such as the JB2 or Simmons (Figs 13.1, 13.2) as appropriate. Catheter control will be better if passed through an introducer set, and this is also indicated where it is anticipated that catheter exchange may be required. Selective studies of the common carotids and the vertebrals are preferable to super-selective studies of the internal and external carotids unless absolutely necessary. The following points should be noted:

1. The hazards of cerebral angiography are largely avoidable; they consist of the complications common to all forms of angiography (see Chapter 9) and those which are particularly related to cerebral angiography.

2. Any on-table ischaemic event has an explanation. Cerebral angiography does not possess an inherently unavoidable complication rate as has been suggested in the past. If an ischaemic event occurs there has been a complication, and its cause must be identified.

3. The most significant complications are embolic in origin, and the most important emboli are particulate. Air bubbles should be avoided as part of good angiographic practice, but are unlikely to cause a severe neurological complication.

4. Emboli may come from the injected solutions. Avoid contamination from glove powder, and dried blood or clot on gloves. Take care to avoid blood contamination of the saline or of the contrast medium, which is always dangerous. Avoid exposure of solutions to air. Contrast medium or heparin/saline in an open bowl is bad practice.

5. Emboli may arise from dislodgement of plaque or thrombus. Never pass a catheter or guidewire through a vessel that has not been visualized by preliminary injection of contrast medium. Use appropriate angled, hydrophilic guidewires. Do not try to negotiate excessively acute bends in vessels. The splinting effect of the catheter will cause spasm and arrest the flow in the artery. Dissections could occur which may lead to occlusion. Newer catheter designs tend to be softer and allow further distal access for more complex procedures. Sharp curves can otherwise be safely negotiated with microcatheters.

6. Emboli may arise from the formation of thrombus within a catheterized vessel. Always ensure that there is free blood flow past the catheter, and avoid forceful passage of a guidewire or catheter in such a way as may damage the intima of the vessel and cause thrombus formation.

7. Emboli may arise within the catheter. Do not allow blood to flow back into the catheter, or if it does occur then flush regularly or by continuous infusion. Never allow a guidewire to remain within a catheter for more than 1 min without withdrawal and flushing, and never introduce a guidewire into a contrast-filled catheter, but fill the catheter with heparinized saline first.

8. Keep study time to a minimum, but not at the expense of the diagnostic usefulness of the study.