Chapter 177 Somatosensory-Evoked Potential for Spine Surgery
Because degenerative spinal conditions and deformities are relatively prevalent, surgical procedures for the spine are common. Furthermore, the evolution and understanding of spinal mechanics and physiology have allowed the introduction of many newer spinal surgical techniques. Nevertheless, a small proportion, less than 0.5%, of patients may develop a persistent neurologic deficit immediately after surgery. Careful surgical techniques, including stabilization of the spine during surgery, have helped reduce this complication somewhat. However, it is apparent that a neurologic injury related to such an intervention can be disabling. For this reason, the monitoring of somatosensory-evoked potentials (SSEPs) from peripheral nerve stimulation (posterior tiblial, peroneal, or median nerves) during spinal column or spinal cord surgery is common.1–31
The spinal cord and nerve roots are at risk during a variety of surgical procedures performed on the spinal cord and surrounding structures. The risk varies with the underlying disease, as well as the type and location of surgery.32–35 Patients with intramedullary tumors, syringomyelia, spinal arteriovenous malformation, thoracoabdominal aneurysms, and any other disorder associated with a baseline neurologic deficit are at greatest risk. The frequency of neurologic injury following scoliosis surgery, correction of congenital spinal deformities, and decompression (with and without spinal fusion) is low, but when damage to the spinal cord occurs, the resulting deficits are often severe, permanent, and devastating.35–37 The detection of significant changes in the monitored-evoked potentials (MEPs) can indicate damage to the motor pathway and may permit appropriate intervention to prevent spinal cord damage.
In the 1970s, SSEP monitoring was developed as an alternative to the wake-up test. SSEP recordings provided the means of monitoring spinal cord function continuously without interfering with surgery or producing additional risk. A large body of data, including clinical experience in thousands of patients, has provided significant information regarding the utility and limitation of SSEP monitoring during spinal surgery, but no prospective controlled trial of SSEP monitoring has ever been published.1,2,5,7,11,14,15,36,38
More recently, several studies from different institutes around the world have proven that a single method of potential recording usually carries a high incidence of misdiagnosing an injury. Based on this, the growing tendency has been to establish a multimodal intraoperative monitoring (MIOM) system that usually combines SSEPs with MEPs and sometimes other varieties. The use of MIOM has documented benefits on specificity and sensitivity as well as for clinical experience and outcome measurements during different spinal surgical procedures.39
Neuroanatomic and Functional Basis
SSEP monitoring evaluates the integrity of the dorsal column. Consequently, if the dorsal columns are preserved, injury to other important pathways could occur without a change in the SSEP.16,40,41
In addition, SSEPs recorded from upper-extremity stimulation do not reflect lower-extremity abnormalities. Posterior tiblial SSEP monitoring must also be recorded if there is concern for damage during surgery to the spinal cord below the midcervical level. Stimulation at the level of the medial malleolus generates afferent volleys that are transmitted by sensory fibers to the dorsal horn at the conus medullaris and then carried by the dorsal tract (fasciculus gracilis) to the dorsal medullary nucleus (nucleus gracilis). Cortical conduction is then achieved via the medial lemniscus and thalamus.
Methods of Monitoring
Noninvasive Techniques
The noninvasive techniques involve the monitoring of potentials generated by spinal, subcortical (brainstem), or cortical pathways from the skin surface or from subdermal needle electrodes. In all the noninvasive studies, peripheral nerves in the upper extremity (median or ulnar nerve) or lower extremity (posterior tiblial or peroneal nerve) are stimulated. Recordings outside the operating field (noninvasive technique) are by far the simplest and can be performed without disturbing the surgeon’s attention from the surgical field. Recordings are most commonly made from standard scalp derivations, usually Cz-Fz (International 10-20 System)42 with leg stimulation, and C3 (C4)-Fz with arm stimulation. Other reference electrodes, such as the ears, are also used. Most of the early studies of surgical monitoring used peripheral stimulation with scalp recording, which generally gives a well-defined, although unstable, response.
Invasive Techniques
A number of methods of recording in the operating field have been developed to facilitate recording closer to the neural tissue.4,12,17,25,43–45 These methods include subarachnoid, epidural, spinous process, and intraspinous ligament recordings. The spinal cord recording (not cortical potentials) facilitates direct evaluation of segmental changes that occur above and below the operative site. Dinner et al.4 assessed 70 of 100 scoliotic patients who were monitored with interspinous electrodes and confirmed that the spinal-evoked potentials were both reliable and reproducible, whereas the wires posed little risk to neurologic function. Lüders et al.17 successfully used spinal-evoked responses during 40 spinal procedures, 32 for scoliosis and Harrington rod placement and 8 for syrinx drainage and resection of tumors and arteriovenous malformations.
Monitoring Techniques
SSEPs are recorded from the cortex with only two of the many electrodes composing the cortical array used by the International 10-20 System.42 One electrode is placed in the midsagittal plane (Cz1), and the second is applied more ventrally in the midline. A third ground is always added (Fz). Placing an additional cervical needle electrode (at C2) helps confirm whether cortical changes reflect true spinal cord changes, as opposed to local cortical variations that may occur in response to alterations in anesthetic administration. Such needle electrodes may also be placed over a lumbar spinous process (L5) to differentiate between similar alterations. SSEP skin and surface electrodes are noninvasive and are applied far away from the operative field, and monitoring may begin before induction and continue through closing.
The large mixed peripheral nerves (median, ulnar, peroneal, or posterior tiblial nerves) receive short 200-msec pulses at rates of 3 to 5 per second. The larger-diameter peripheral sensory A alpha and A beta fast-conducting fibers are stimulated with intensities set at two or three times the motor threshold, sufficient to produce a motor twitch.46 Two hundred recordings are then averaged and passed through band-pass filters of 30 Hz to 3 kHz to improve signal-to-noise ratio. Alternate stimulation of the right and left sides allows both waveforms to be simultaneously monitored with a split-screen array. This requires 50 seconds (means of 200 recordings) for two extremities and 100 seconds for all four extremities. Findings may be reproduced by repeating stimulation of one or both sides, enabling the surgeon to be alerted to significant changes in any of the four extremities within minutes (Fig. 177-1).