Radiculopathy

Published on 03/03/2015 by admin

Filed under Neurology

Last modified 03/03/2015

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 5 (1 votes)

This article have been viewed 7403 times

29 Radiculopathy

Radiculopathy is one of the most common diagnoses referred to any electromyography (EMG) laboratory. Even with the widespread use of magnetic resonance imaging, EMG continues to play an important role in the evaluation of radiculopathy. Although imaging studies usually are diagnostic in the more common radiculopathies caused by structural lesions, they often are unrevealing in radiculopathy caused by infection, infiltration, demyelination, or infarction. Whereas imaging studies do well in visualizing the spinal cord and nerve roots and their relationship to the vertebrae and intervertebral discs, they yield no information about how the nerve is functioning. In this regard, EMG complements magnetic resonance imaging with its ability not only to localize the lesion but also to functionally assess the nerve. However, every electromyographer should be aware that EMG has several significant limitations in assessing radiculopathy that can result in false-negative studies.

Clinical

The clinical hallmark of radiculopathy includes pain and paresthesias radiating in the distribution of a nerve root, often associated with sensory loss and paraspinal muscle spasm. Motor dysfunction may also be present. Radiculopathy caused by degenerative bone and disc disease most often affects the cervical (C3–C8) and lower lumbosacral (L3–S1) segments, resulting in well-recognized clinical syndromes (Tables 29–1 and 29–2). Associated paraspinal muscle spasm commonly limits the range of motion, and movement of the neck or back may exacerbate symptoms.

The particular sensory and motor symptoms associated with a radiculopathy depend on which nerve root or roots are involved. Each nerve root supplies cutaneous sensation to a specific area of skin, known as a dermatome (Figures 29–1 and 29–2), and motor innervation to certain muscles, known as a myotome (Tables 29–3 and 29–4). Each dermatome overlaps widely with adjacent dermatomes. Consequently, it is very unusual for a patient with an isolated radiculopathy to develop a severe or dense sensory disturbance. Dense numbness usually is more indicative of a peripheral nerve lesion than a radiculopathy. In a patient with radiculopathy, sensory loss more often is vague, poorly defined, or absent, despite the presence of paresthesias.

image

FIGURE 29–1 Cervical and thoracic dermatomes.

(From Aids to the examination of the peripheral nervous system. London: Baillière Tindall. With permission, 1986.)

image

FIGURE 29–2 Lower thoracic and lumbosacral dermatomes.

(From Aids to the examination of the peripheral nervous system. London: Baillière Tindall. With permission, 1986.)

Table 29–3 Root Innervation of Major Upper Extremity Muscles

Root Muscle Nerve
C4 5 Rhomboids Dorsal scapular
C5 6 Supraspinatus Suprascapular
C5 6 Infraspinatus Suprascapular
C5 6 Deltoid Axillary
C5 6 Biceps brachii Musculocutaneous
C5 6 Brachioradialis Radial
C5 6 7 Serratus anterior Long thoracic
C5 6 7 Pectoralis major: Clavicular Lateral pectoral
C6 7 8 T1 Pectoralis major: Sternal Medial pectoral
C6 7 Flexor carpi radialis Median
C6 7 Pronator teres Median
C6 7 Extensor carpi radialis longus Radial
C6 7 8 Latissimus dorsi Thoracodorsal
C6 7 8 Triceps brachii Radial
C6 7 8 Anconeus Radial
C7 8 Extensor digitorum communis Radial
C7 8 Flexor digitorum sublimis Median
C7 8 Extensor indicis proprius Radial
C7 8 Extensor carpi ulnaris Radial
C7 8 T1 Flexor pollicis longus Median
C7 8 T1 Flexor digitorum profundus Median/Ulnar
C8 T1 Flexor carpi ulnaris* Ulnar
C8 T1 First dorsal interosseus Ulnar
C8 T1 Abductor digiti minimi Ulnar
C8 T1 Abductor pollicis brevis Median

Note: Underlining indicates predominant root innervation.

* In some individuals, the flexor carpi ulnaris may have a C7 contribution.

Table 29–4 Root Innervation of Major Lower Extremity Muscles

Root Muscle Nerve
L2 3 4 Iliacus Femoral
L2 3 4 Rectus femoris Femoral
L2 3 4 Vastus lateralis and medialis Femoral
L2 3 4 Adductors Obturator
L4 5 Tibialis anterior Deep peroneal
L4 5 Extensor digitorum longus Deep peroneal
L4 5 S1 Extensor hallucis longus Deep peroneal
L4 5 S1 Extensor digitorum brevis Deep peroneal
L4 5 S1 Medial hamstrings Sciatic
L4 5 S1 Gluteus medius Superior gluteal
L4 5 S1 Tensor fascia latae Superior gluteal
L5 S1 Tibialis posterior Tibial
L5 S1 Flexor digitorum longus Tibial
L5 S1 Peronei Superficial peroneal
L5 S1 Lateral hamstrings (biceps femoris) Sciatic
L5 S1 2 Gastrocnemius – lateral Tibial
L5 S1 2 Gluteus maximus Inferior gluteal
L5 S1 2 Abductor hallucis brevis Tibial–medial plantar
S1 2 Abductor digiti quinti pedis Tibial–lateral plantar
S1 2 Gastrocnemius – medial Tibial
S1 2 Soleus Tibial

Note: Underlining indicates predominant root innervation.

Just as with dermatomes, there is a wide overlap of myotomes. Indeed, nearly every muscle is innervated by at least two if not three myotomes (i.e., nerve roots). For instance, the triceps brachii muscle, predominantly a C7-innervated muscle, also receives some innervation from the C6 and C8 nerve roots. Consequently, paralysis of a muscle is very unusual in an isolated radiculopathy. Even in the case of a severe or complete C7 radiculopathy, the triceps brachii will become weak but not paralyzed, retaining some strength from its partial C6 and C8 innervation.

The deep tendon reflexes may be abnormal in a radiculopathy, depending on the root innervation to the muscle tendon being tested. The biceps and brachioradialis reflexes may be depressed in a lesion of the C5 or C6 nerve roots. The triceps reflex typically is most depressed with a lesion of the C7 nerve root but, because of its significant partial C6 innervation, may be abnormal with a lesion of that root as well. There is no routine reflex to check for a lesion of C8 or T1. In the lower extremities, the knee and ankle reflexes are commonly checked. The knee jerk may be reduced with a lesion of the L3 or L4 (rarely L2) nerve roots and the ankle jerk with a lesion of the S1 nerve root. Again, there is no useful routine reflex to assess the L5 root. Occasionally, a tibialis posterior or medial hamstring reflex can be elicited and, if asymmetric, suggests an L5 radiculopathy. However, both reflexes often are unobtainable in normal individuals.

Differential Diagnosis

The differential diagnosis of pain and radiating paresthesias includes not only radiculopathy but also proximal neuropathy, plexopathy and entrapment neuropathy. Although plexopathies are much less common than radiculopathies, separating plexopathy from radiculopathy on clinical grounds can be quite difficult. In addition, some entrapment neuropathies may be mistaken for radiculopathy, especially when the symptoms are mild. Because an entrapped nerve can cause referred pain and paresthesias, it is possible for distal entrapment to cause symptoms in more proximal segments. For instance, in ulnar neuropathy at the elbow, pain radiating into the upper arm or shoulder is not unusual. Some cases of carpal tunnel syndrome (CTS) are associated with pain in the forearm, the arm, and rarely the shoulder. The presence of referred pain along with distal paresthesias from entrapment neuropathies may suggest radiculopathy. However, pain in the neck or back and exacerbation of symptoms with neck or back movement do not occur in the common entrapment neuropathies and thus provide an important clinical clue pointing to radiculopathy.

Besides plexopathy, proximal neuropathy, and entrapment neuropathy, the major differential diagnosis of radiculopathy includes local orthopedic problems that result in pain and secondary muscle spasm. Often the key task in the EMG laboratory is to try to separate pain due to muscle spasm alone from pain due to true nerve root dysfunction.

Electrophysiologic Evaluation

Nerve Conduction Studies

In patients with radiculopathy, nerve conduction studies typically are normal, and the electrodiagnosis is established with needle EMG (Box 29–1). Although some motor abnormalities are occasionally seen in radiculopathy, the more important reason to perform nerve conduction studies is to exclude other conditions that may mimic radiculopathy, especially entrapment neuropathy and plexopathy. In cases of upper extremity lesions, ulnar neuropathy at the elbow and CTS must be excluded. Ulnar neuropathy and C8 radiculopathy both can present with pain in the arm associated with numbness of the little and ring fingers. Likewise, pain in the arm with paresthesias involving the thumb, index, and middle fingers may be seen in C6–C7 radiculopathy and CTS. In the case of lower extremity symptoms, one must exclude peroneal neuropathy at the fibular neck. Both peroneal palsy and L5 radiculopathy may present with pain in the leg, accompanied by footdrop and paresthesias over the dorsum of the foot and lateral calf. In more severe cases, the clinical differentiation between a radiculopathy and a common entrapment usually is straightforward. In mild or early cases, however, the distinction often is more difficult, and nerve conduction studies are useful to either demonstrate or exclude an entrapment neuropathy.

Box 29–1

Recommended Nerve Conduction Study Protocol for Radiculopathy

Depending on the underlying pathophysiology and the level of the lesion, abnormalities occasionally may be seen on routine motor conduction and F response studies in radiculopathy. If the pathophysiology is predominantly demyelinating, the underlying axons remain intact. In that case, any motor study, stimulating and recording distally, will show a normal latency, conduction velocity, and compound muscle action potential (CMAP) amplitude. The only possible abnormality will be in the F responses. Because the F responses assess conduction both distally and proximally, abnormal F responses with normal distal conduction studies suggest a proximal lesion, either in the proximal nerve, plexus or roots. Of course, F waves will be abnormal only if the recorded muscle is innervated by the affected nerve roots.

In the upper extremity, F waves are routinely recorded only for the median and ulnar nerves, which are C8–T1 innervated. Thus, median and ulnar F-wave abnormalities may be seen in C8–T1 radiculopathy; however, these roots are infrequently affected by disc or bone impingement, the most common causes of radiculopathy. A radiculopathy at C5, C6, or C7, which are more common sites of root impingement, will not be reflected in the median or ulnar F responses. The situation is different in the lower extremities. The distally recorded peroneal and tibial muscles (extensor digitorum brevis, abductor hallucis brevis) are innervated predominantly by the L5 and S1 nerve roots, respectively. These levels are often affected by radiculopathy. Thus, in L5–S1 radiculopathies, peroneal and tibial F responses may be prolonged, especially in comparison with the contralateral side.

The H reflex occasionally is helpful in evaluating lower extremity radiculopathy. However, the H reflex, recorded from the soleus, can be used to evaluate only a possible S1 radiculopathy and is most useful when the symptomatic side is compared with the asymptomatic side. The H reflex is the electrical correlate of the ankle reflex; accordingly, it may be delayed or absent in any lesion that depresses the ankle jerk, including polyneuropathy, sciatic neuropathy, lumbosacral plexopathy, and S1 radiculopathy. Unfortunately, the combination of normal distal motor nerve conduction studies and an abnormal H reflex cannot help differentiate between plexopathy and radiculopathy, but can only suggest a proximal lesion.

If the pathophysiology also involves axonal loss, nerve conduction abnormalities may be seen in the motor conduction studies. Here again, abnormalities are seen only if the recorded muscle is innervated by the affected nerve root. Axonal loss may result in a decreased CMAP amplitude, with some slowing of conduction velocity and distal latency, especially if the largest fibers are involved. For instance, in an L5–S1 radiculopathy associated with axonal loss, the ipsilateral peroneal and tibial motor responses may have slightly slowed conduction velocities, slightly prolonged distal latencies, and reduced CMAP amplitudes, especially in comparison with the contralateral side. The distal latency prolongation and conduction velocity slowing, however, should never drop into the demyelinating range.

Sensory studies are the most important part of the nerve conduction studies in the assessment of radiculopathy. The sensory nerve action potential (SNAP) remains normal in lesions proximal to the dorsal root ganglion (Figure 29–3). Nearly all radiculopathies, including those caused by compression from herniated discs and spondylosis, damage the root proximal to the dorsal root ganglion (Figure 29–4). Conversely, lesions at or distal to the dorsal root ganglion result in decreased SNAP amplitudes if they are associated with axonal loss. Thus, lesions of the plexus and peripheral nerve (proximal and distal nerve) are associated with abnormal SNAPs, whereas lesions of the nerve root result in normal SNAPs.

It is always imperative to check the SNAP that is in the distribution of the sensory symptoms (Table 29–5). For instance, if a patient has pain down the arm with tingling and paresthesias of the middle finger, the median sensory response to the middle finger should be checked. In such a case, if the lesion is at or distal to the dorsal root ganglion (e.g., in the brachial plexus or median nerve) and there is axonal loss, the SNAP amplitude will be abnormal, if enough time has passed that wallerian degeneration has taken place. On the other hand, if the lesion is proximal to the dorsal root ganglion (e.g., C7 radiculopathy), the SNAP amplitude will be normal. The presence of a normal SNAP yields important diagnostic information. A normal SNAP in the same distribution as sensory symptoms and signs should always suggest a lesion proximal to the dorsal root ganglion (although a proximal demyelinating or acute peripheral nerve lesion also can result in a normal SNAP). One important rare exception to his rule is discussed below.

Table 29–5 Sensory Potentials to Check in Radiculopathy

Buy Membership for Neurology Category to continue reading. Learn more here
SNAP Root
Lateral antebrachial cutaneous C5–C6
Radial to the thumb C6