Families yielding important phytopharmaceuticals

Published on 02/03/2015 by admin

Filed under Basic Science

Last modified 22/04/2025

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 0 (0 votes)

This article have been viewed 1905 times

Chapter 4 Families yielding important phytopharmaceuticals

Systematics has always been an important tool in pharmacognostical practice and research. Related families often contain similar types of compounds and, therefore, may have similar beneficial or toxic effects. Consequently, an understanding of the systematic position of a medicinal plant species allows some deductions to be made about the (biologically active) secondary natural products from the species. For example, many members of the mint family are known to contain essential oil.

In this chapter, the pharmaceutically most important families are highlighted, especially those that have yielded many, or very important, botanical drugs. Since a species may yield several botanical drugs (e.g. from the flowers and the leaves), these are not included in this chapter, but can be found in Part B. Here, 20 families (out of a total of more than 200 recognized families) have been selected as being particularly important or interesting and are presented in alphabetical order within the groupings angiosperms and gymnosperms. The families are not classified further; more detailed information on the systematic position of these families can be found in relevant botanical textbooks (see further reading).

Angiosperms (magnoliphyta)

These are the plants we commonly know as ‘fruitbearing plants’ – i.e. the seed is covered by closed carpels. The fruit are sometimes very large and yield many of the economically important botanical products used because of their nutritional properties. An important characteristic of these plants is double fertilization, in which cells other than the egg unite during the fertilization to give a triploid endosperm. This then develops into the fruit, which may also include other parts of the flowers. The flowers are typically fertilized by animals (i.e. zoogamous; mostly insects, but also birds, bats and spiders). Many species of this huge group have secondarily lost this trait and are fertilized with the help of the wind (e.g. oak, birch). At least 240,000 species of angiosperms are known, making it the largest group of plants. Many estimates, however, are much higher.

The taxon was originally split into two large groups – the Dicotyledoneae and the Monocotyledoneae – distinguished, inter alia, by the different number of cotyledons (primary leaves), but modern systematic classifications reject this division into only two groups.

Alliaceae (‘monocotyledoneae’)

Allium is the only important genus of this family, which includes not only important food plants such as the common onion (Allium cepa L.), leek (A. porrum L.) and chives (A. schoenoprasum L.), but also the medicinal plant garlic (A. sativum L.). The genus is often included in the Liliaceae (i.e. the broadly defined lily family).

Chemical characteristics of the family

The genus Allium is particularly well known for very simple sulphur-containing compounds, especially alliin and allicin (Fig. 4.1), which are thought to be involved in the reported pharmacological activities of the plant as a bactericidal antibiotic, in the treatment of arterial hypertension and in the prevention of arteriosclerosis and stroke.

Apiaceae (also called umbelliferae)

Morphological characteristics of the family

This family of nearly exclusively herbaceous species is characterized by hermaphrodite flowers in a double umbel (Fig. 4.2); note that the closely related Araliaceae have a simple umbel. Typical for the family are the furrowed stems and hollow internodes, leaves with a sheathing base and generally a much divided lamina. The flowers are relatively inconspicuous, with two pistils, an inferior gynaecium with two carpels, a small calyx and generally a white to greenish corolla, with free petals and sepals.

Asteraceae – the ‘daisy’ family (also known as compositae)

This large family has kept botanists busy for many centuries and still no universally accepted classification exists. All members of the family have a complex inflorescence (the capitula), which gave rise to the older name of the family: Compositae (= inflorescence composed of many flowers). In other features, the family is rather diverse, especially with respect to its chemistry.

Chemical characteristics of the family

A typical chemical trait of this family is the presence of polyfructanes (especially inulin) as storage carbohydrates (instead of polysaccharides) in perennial taxa. Inulin-containing drugs are used for preparing malted coffee (e.g. from the rootstocks of Cichorium intybus, chicory). In many taxa, some segments of the family accumulate sesquiterpene lactones (typically with 15-carbon atoms such as parthenolide; Fig. 4.4), which are important natural products responsible for the pharmacological effects of many botanical drugs such as Chrysanthemum parthenium (feverfew) and Arnica montana (arnica). Polyacetylenic compounds (polyenes), and essential oil, are also widely distributed. Some taxa accumulate pyrrolizidine alkaloids, which, for example, are present in Tussilago farfara (coltsfoot) in very small amounts. Many of these alkaloids are known for their hepatotoxic effects. Other taxa accumulate unusual diterpenoids; the diterpene glycoside stevioside (Fig. 4.4), for example, is of interest because of its intensely sweet taste.

Caesalpiniaceae

This family was formerly part of the Leguminosae (or Fabaceae) and is closely related to two other families: the Fabaceae (see below) and the Mimosaceae (not discussed). Many contain nitrogen-fixing bacteria in root nodules. This symbiotic relationship is beneficial to both partners (for the plant, increased availability of physiologically usable nitrogen; for the bacterium, protection and optimal conditions for growth).

Fabaceae

This family is also classified together with the Mimosaceae and the Caesalpiniaceae as the Leguminosae (or Fabaceae, s.l.; see note under Caesalpiniaceae). One of its most well-known characteristics is that many of its taxa are able to bind atmospheric nitrogen.

Morphological characteristics of the family

This family is characterized by a large number of derived traits. Most of the taxa of this family are herbaceous, sometimes shrubby and only very rarely trees. Typically, the leaves are pinnate and sometimes the terminal one is modified to form a tendril, used for climbing. Bipinnate leaves are not found in this family. The five sepals are at least basally united. The corolla is formed of five petals and has a very characteristic butterfly-like shape (papilionaceous), with the two lower petals fused and forming a keel-shaped structure, the two lateral ones protruding on both sides of the flower and the largest petal protruding above the flower, being particularly showy. The androecium of ten stamens generally forms a characteristic tubular structure with at least nine out of ten of the stamens forming a sheath. Normally, the fruit are pods, containing beans (technically called legumes) with two sutures, which open during the drying of the fruit (Fig. 4.6).

Hypericaceae

This small family was formerly part of the Guttiferae and is of pharmaceutical importance because of St John’s wort, which in the last decade of the 20th century became one of the most important medicinal plants in Western medicine.

Chemical characteristics of the family

The former name Guttiferae is an important indicator of a characteristic chemical feature: the presence of resins, balsam and other glands containing excretory products. For example, the hypericin glands, with a characteristic red colour, are present especially in the flowers and contain naphthodianthrones, including hypericin (Fig. 4.8) and pseudohypericin, which are characteristic for some sections of the genus. Typical for the family in general are also xanthones (found nearly exclusively in this family and in the Gentianaceae). The genus is known to accumulate flavonoids and their glycosides (rutoside, hyperoside), as well as hyperforin (Fig. 4.8) and its derivatives, which are derived from the terpenoid pathway.

Lamiaceae

The Lamiaceae is a family yielding a high number of medicinal taxa, especially due to their high content of essential oil.

Papaveraceae

This rather small family has yielded a multitude of pharmaceutically or toxicologically important genera (e.g. Chelidonium, Eschholzia, Glaucium, Papaver) and natural products from two of its representatives are particularly widely used.

Rubiaceae

The family yields one of the most important stimulants, coffee (Coffea arabica L. and C. canephora Pierre ex Froehner) and one of the first and most important medicinal plants brought over from the ‘New World’, cinchona bark (see below).

Rutaceae

The family includes some of the most important fruitbearing plants known: the genus Citrus with orange, lemon, lime, mandarin, grapefruit, etc.

Solanaceae

This family includes one of the most important staples Solanum tuberosum (potato) and many medicinal and toxic plants known for their highly active natural products.

Zingiberaceae (‘monocotyledoneae’)

In terms of pharmaceutical usage, this family is the most important of the former class Monocotyledoneae, which includes the Liliaceae, Palmaceae and Poaceae. Many members of this family are native to the Indo-Malayan region and are thus particularly important in Asian medical systems.

Gymnosperms

This much smaller group of seed-bearing plants differs from the angiosperms in not having the seeds enclosed in carpels (the seeds are naked) and in not having double fertilization. The gymnosperms are generally fertilized with the help of the wind and are often characterized as having needles instead of broad leaves (the most important exception being Ginkgo biloba, the Chinese maidenhair tree). Only about 750 species are known, but some species are extremely important in the production of timber [European fir (Abies spp.), spruce (Picea spp.), Douglas fir (Pseudotsuga menziesii (Mirbel) Franco), all Pinaceae] and some yield medically important essential oil. The most important medicinal plant is Ginkgo biloba.

Ginkgoaceae

This is one of the most ancient families of the seed-bearing plants and had been widely distributed during the Mesozoic (180 million years ago). Only one species survives today.