Evaluation of the Patient with Pulmonary Disease

Published on 12/06/2015 by admin

Filed under Pulmolory and Respiratory

Last modified 22/04/2025

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 0 (0 votes)

This article have been viewed 3031 times

3

Evaluation of the Patient with Pulmonary Disease

In evaluating the patient with pulmonary disease, the physician is concerned with three levels of evaluation: macroscopic, microscopic, and functional. The methods for assessing each of these levels range from simple and readily available studies to highly sophisticated and elaborate techniques requiring state-of-the-art technology.

Each level is considered here, with an emphasis on the basic principles and utility of the studies. Subsequent chapters repeatedly refer to these methods because they form the backbone of the physician’s approach to the patient.

Evaluation on a Macroscopic Level

Physical Examination

The most accessible method for evaluating the patient with respiratory disease is the physical examination, which requires only a stethoscope; the eyes, ears, and hands of the examiner; and the examiner’s skill in eliciting and recognizing abnormal findings. Because the purpose of this discussion is not to elaborate the details of a chest examination but to examine a few of the basic principles, the primary focus is on selected aspects of the examination and what is known about mechanisms that produce abnormalities.

Apart from general observation of the patient, precise measurement of the patient’s respiratory rate, and interpretation of the patient’s pattern of and difficulty with breathing, the examiner relies primarily on palpation and percussion of the chest and auscultation with a stethoscope. Palpation is useful for comparing the expansion of the two sides of the chest. The examiner can determine whether the two lungs are expanding symmetrically or if some process is affecting aeration much more on one side than on the other. Palpation of the chest wall is also useful for feeling the vibrations created by spoken sounds. When the examiner places a hand over an area of lung, vibration normally should be felt as the sound is transmitted to the chest wall. This vibration is called vocal or tactile fremitus. Some disease processes improve transmission of sound and augment the intensity of the vibration. Other conditions diminish transmission of sound and reduce the intensity of the vibration or eliminate it altogether. Elaboration of this concept of sound transmission and its relation to specific conditions is provided in the discussion of chest auscultation.

When percussing the chest, the examiner notes the quality of sound produced by tapping a finger of one hand against a finger of the opposite hand pressed closely to the patient’s chest wall. The principle is similar to that of tapping a surface and judging whether what is underneath is solid or hollow. Normally percussion of the chest wall overlying air-containing lung gives a resonant sound, whereas percussion over a solid organ such as the liver produces a dull sound. This contrast allows the examiner to detect areas with something other than air-containing lung beneath the chest wall, such as fluid in the pleural space (pleural effusion) or airless (consolidated) lung, each of which sounds dull to percussion. At the other extreme, air in the pleural space (pneumothorax) or a hyperinflated lung (as in emphysema) may produce a hyperresonant or more “hollow” sound, approaching what the examiner hears when percussing over a hollow viscus such as the stomach. Additionally, the examiner can locate the approximate position of the diaphragm by a change in the quality of the percussed note, from resonant to dull, toward the bottom of the lung. A convenient aspect of the whole-chest examination is the basically symmetric nature of the two sides of the chest; a difference in the findings between the two sides suggests a localized abnormality.

When auscultating the lungs with a stethoscope, the examiner listens for two major features: the quality of the breath sounds and the presence of any abnormal (commonly called adventitious) sounds. As the patient takes a deep breath, the sound of airflow can be heard through the stethoscope. When the stethoscope is placed over normal lung tissue, sound is heard primarily during inspiration, and the quality of the sound is relatively smooth and soft. These normal breath sounds heard over lung tissue are called vesicular breath sounds. There is no general agreement about where these sounds originate, but the source presumably is somewhere distal to the trachea and proximal to the alveoli.

When the examiner listens over consolidated lung—that is, lung that is airless and filled with liquid or inflammatory cells—the findings are different. The sound is louder and harsher, more hollow or tubular in quality, and expiration is at least as loud and as long as inspiration. Such breath sounds are called bronchial breath sounds, as opposed to the normal vesicular sounds. This difference in quality of the sound is due to the ability of consolidated lung to transmit sound better than normally aerated lung. As a result, sounds generated by turbulent airflow in the central airways (trachea and major bronchi) are transmitted to the periphery of the lung and can be heard through the stethoscope. Normally these sounds are not heard in the lung periphery; they can be demonstrated only by listening near their site of origin—for example, over the upper part of the sternum or the suprasternal notch. When the stethoscope is placed over large airways that are not quite so central or over an area of partially consolidated lung, the breath sounds are intermediate in quality between bronchial and vesicular and therefore are termed bronchovesicular.

Better transmission of sound through consolidated rather than normal lung also can be demonstrated when the patient whispers or speaks. The enhanced transmission of whispered sound results in more distinctly heard syllables and is termed whispered pectoriloquy. Spoken words can be heard more distinctly through the stethoscope placed over the involved area, a phenomenon commonly called bronchophony. When the patient says the vowel “E,” the resulting sound through consolidated lung has a nasal “A” quality. This E-to-A change is termed egophony. All these findings are variations on the same theme—an altered transmission of sound through airless lung—and basically have the same significance.

Two qualifications are important in interpreting the quality of breath sounds. First, normal transmission of sound depends on patency of the airway. If a relatively large bronchus is occluded, such as by tumor, secretions, or a foreign body, airflow into that region of lung is diminished or absent, and the examiner hears decreased or absent breath sounds over the affected area. A blocked airway proximal to consolidated or airless lung also eliminates the increased transmission of sound described previously. Second, either air or fluid in the pleural space acts as a barrier to sound, so either a pneumothorax or pleural effusion causes diminution of breath sounds.

The second major feature the examiner listens for is adventitious sounds. Unfortunately the terminology for these adventitious sounds varies considerably among examiners; therefore, only the most commonly used terms are considered here: crackles, wheezes, and friction rubs. A fourth category, rhonchi, is used inconsistently by different examiners, thus decreasing its clinical usefulness for communicating abnormal findings.

Crackles, also called rales, are a series of individual clicking or popping noises heard with the stethoscope over an involved area of lung. Their quality can range from the sound produced by rubbing hairs together to that generated by opening a hook-and-loop (Velcro) fastener or crumpling a piece of cellophane. These sounds are “opening” sounds of small airways or alveoli that have been collapsed or decreased in volume during expiration because of fluid, inflammatory exudate, or poor aeration. On each subsequent inspiration, opening of these distal lung units creates the series of clicking or popping sounds heard either throughout or at the latter part of inspiration. The most common disorders producing crackles are pulmonary edema, pneumonia, interstitial lung disease, and atelectasis. Although some clinicians believe the quality of the crackles helps distinguish the different disorders, others think that such distinctions in quality are of little clinical value.

Wheezes are high-pitched, continuous sounds generated by airflow through narrowed airways. Causes of such narrowing include airway smooth muscle constriction, edema, secretions, intraluminal obstruction, and collapse because of poorly supported walls. These individual pathophysiologic features are discussed in Chapters 4 through 7. For reasons that are also described later, the diameter of intrathoracic airways is less during expiration than inspiration, and wheezing generally is more pronounced or exclusively heard in expiration. However, because sufficient airflow is necessary to generate a wheeze, wheezing may no longer be heard if airway narrowing is severe. In conditions such as asthma and chronic obstructive pulmonary disease, wheezes originate in multiple narrowed airways and are generally polyphonic, meaning they are a combination of different musical pitches that start and stop at different times during the expiratory cycle. In contrast, wheezing sounds tend to be monophonic when they result from focal narrowing of the trachea or large bronchi. When the site of narrowing is the extrathoracic airway (e.g., in the larynx or the extrathoracic portion of the trachea), the term stridor is used to describe the inspiratory wheezing-like sound that results from such narrowing. Physiologic factors that relate the site of narrowing and the phase of the respiratory cycle most affected are described later in this chapter and shown in Figures 3-20 and 3-21.

Although clinicians commonly use the term rhonchi when referring to sounds generated by secretions in airways, examiners use the term in somewhat different ways. The term is used to describe low-pitched continuous sounds that are somewhat coarser than high-pitched wheezing. It is also used to describe the very coarse crackles that often result from airway secretions. As a result, the term is frequently used to describe the variety of noises and musical sounds that cannot be readily classified within the more generally accepted categories of crackles and wheezes but that all appear to have airway secretions as a common underlying cause.

A friction rub is the term for the sounds generated by inflamed or roughened pleural surfaces rubbing against each other during respiration. A rub is a series of creaky or rasping sounds heard during both inspiration and expiration. The most common causes are primary inflammatory diseases of the pleura or parenchymal processes that extend out to the pleural surface, such as pneumonia and pulmonary infarction.

Table 3-1 summarizes some of the pulmonary findings commonly seen in selected disorders affecting the respiratory system. Many of these are mentioned again in subsequent chapters when the specific disorders are discussed in more detail.

Although the focus here is the chest examination itself as an indicator of pulmonary disease, other nonthoracic manifestations of primary pulmonary disease may be detected on physical examination. Briefly discussed here are clubbing (with or without hypertrophic osteoarthropathy) and cyanosis.

Clubbing is a change in the normal configuration of the nails and the distal phalanx of the fingers or toes (Fig. 3-1). Several features may be seen: (1) loss of the normal angle between the nail and the skin, (2) increased curvature of the nail, (3) increased sponginess of the tissue below the proximal part of the nail, and (4) flaring or widening of the terminal phalanx. Although several nonpulmonary disorders can result in clubbing (e.g., congenital heart disease with right-to-left shunting, endocarditis, chronic liver disease, inflammatory bowel disease), the most common causes clearly are pulmonary. Occasionally, clubbing is familial and of no clinical significance. Carcinoma of the lung (or mesothelioma of the pleura) is the single leading etiologic factor. Other pulmonary causes include chronic intrathoracic infection with suppuration (e.g., bronchiectasis, lung abscess, empyema) and some types of interstitial lung disease. Uncomplicated chronic obstructive lung disease is not associated with clubbing, so the presence of clubbing in this setting should suggest coexisting malignancy or suppurative disease.

Clubbing may be accompanied by hypertrophic osteoarthropathy, characterized by periosteal new bone formation, particularly in the long bones, and arthralgias and arthritis of any of several joints. With coexistent hypertrophic osteoarthropathy, either pulmonary or pleural tumor is the likely cause of the clubbing, because hypertrophic osteoarthropathy is relatively rare with the other causes of clubbing.

The mechanism of clubbing and hypertrophic osteoarthropathy is not clear. It has been observed that clubbing is associated with an increase in digital blood flow, whereas the osteoarthropathy is characterized by an overgrowth of highly vascular connective tissue. Why these changes occur is a mystery. One interesting theory suggests an important role for stimuli coming through the vagus nerve, because vagotomy frequently ameliorates some of the bone and nail changes. Another theory proposes that megakaryocytes and platelet clumps, bypassing the pulmonary vascular bed and affecting the peripheral systemic circulation, release growth factors responsible for the soft-tissue changes of clubbing.

Cyanosis, the second extrapulmonary physical finding arising from lung disease, is a bluish discoloration of the skin (particularly under the nails) and mucous membranes. Whereas oxygenated hemoglobin gives lighter skin and all mucous membranes their usual pink color, a sufficient amount of deoxygenated hemoglobin produces cyanosis. Cyanosis may be either generalized, owing to a low PO2 or low systemic blood flow resulting in increased extraction of oxygen from the blood, or localized, owing to low blood flow and increased O2 extraction within the localized area. In lung disease, the common factor causing cyanosis is a low PO2, and several different types of lung disease may be responsible. The total amount of hemoglobin affects the likelihood of detecting cyanosis. In the anemic patient, if the total quantity of deoxygenated hemoglobin is less than the amount needed to produce the bluish discoloration, even a very low PO2 may not be associated with cyanosis. In the patient with polycythemia, in contrast, much less depression of PO2 is necessary before sufficient deoxygenated hemoglobin exists to produce cyanosis.

Chest Radiography

The chest radiograph, which is largely taken for granted in the practice of medicine, is used not only in evaluating patients with suspected respiratory disease but also sometimes in the routine evaluation of asymptomatic patients. Of all the viscera, the lungs are the best suited for radiographic examination. The reason is straightforward: air in the lungs provides an excellent background against which abnormalities can stand out. Additionally, the presence of two lungs allows each to serve as a control for the other so that unilateral abnormalities can be more easily recognized.

A detailed description of interpretation of the chest radiograph is beyond the scope of this text. However, a few principles can aid the reader in viewing films presented in this and subsequent chapters.

First, the appearance of any structure on a radiograph depends on the structure’s density; the denser the structure, the whiter it appears on the film. At one extreme is air, which is radiolucent and appears black on the film. At the other extreme are metallic densities, which appear white. In between is a spectrum of increasing density from fat to water to bone. On a chest radiograph, the viscera and muscles fall within the realm of water density tissues and cannot be distinguished in radiographic density from water or blood.

Second, in order for a line or an interface to appear between two adjacent structures on a radiograph, the two structures must differ in density. For example, within the cardiac shadow, the heart muscle cannot be distinguished from the blood coursing within the chambers because both are of water density. In contrast, the borders of the heart are visible against the lungs because the water density of the heart contrasts with the density of the lungs, which is closer to that of air. However, if the lung adjacent to a normally denser structure (e.g., heart or diaphragm) is airless, either because of collapse or consolidation, the neighboring structures are now both of the same density, and no visible interface or boundary separates them. This principle is the basis of the useful silhouette sign. If an expected border with an area of lung is not visualized or is not distinct, the adjacent lung is abnormal and lacks full aeration.

Chest radiographs usually are taken in two standard views—posteroanterior (PA) and lateral (Fig. 3-2). For a PA film, the x-ray beam goes from the back to the front of the patient, and the patient’s anterior chest is adjacent to the film. The lateral view is taken with the patient’s side against the film, and the beam is directed through the patient to the film. If a film cannot be taken with the patient standing and the chest adjacent to the film, as in the case of a bedridden patient, then an anteroposterior view is taken. For this view, which is generally obtained using a portable chest radiograph machine in the patient’s hospital room, the film is placed behind the patient (generally between the patient’s back and the bed), and the beam is directed through the patient from front to back. Lateral decubitus views, either right or left, are obtained with the patient in a side-lying position, with the beam directed horizontally. Decubitus views are particularly useful for detecting free-flowing fluid within the pleural space and therefore are often used when a pleural effusion is suspected.

Knowledge of radiographic anatomy is fundamental for interpretation of consolidation or collapse (atelectasis) and for localization of other abnormalities on the chest film. Lobar anatomy and the locations of fissures separating the lobes are shown in Figure 3-3. Localization of an abnormality often requires information from both the PA and lateral views, both of which should be taken and interpreted when an abnormality is being evaluated. As can be seen in Figure 3-3, the major fissure separating the upper (and middle) lobes from the lower lobe runs obliquely through the chest. Thus it is easy to be misled about location on the basis of the PA film alone; a lower lobe lesion may appear in the upper part of the chest, whereas an upper lobe lesion may appear much lower in position.

When a lobe becomes filled with fluid or inflammatory exudate, as in pneumonia, it contains water rather than air density and therefore is easily delineated on the chest radiograph. With pure consolidation the lobe does not lose volume, so it occupies its usual position and retains its usual size. An example of lobar consolidation on PA and lateral radiographs is shown in Figure 3-4.

In contrast, when a lobe has airless alveoli and collapses, it not only becomes more dense but also has features of volume loss characteristic for each individual lobe. Such features of volume loss include change in position of a fissure or the indirect signs of displacement of the hilum, diaphragm, trachea, or mediastinum in the direction of the volume loss (Fig. 3-5). A common mechanism of atelectasis is occlusion of the airway leading to the collapsed region of lung, caused, for example, by a tumor, aspirated foreign body, or mucous plug. All the aforementioned examples reflect either pure consolidation or pure collapse. In practice, however, a combination of these processes often occurs, leading to consolidation accompanied by partial volume loss.

When the chest film shows a diffuse or widespread pattern of increased density within the lung parenchyma, it often is useful to characterize the process further, depending on the pattern of the radiographic findings. The two primary patterns are interstitial and alveolar. Although the naming of these patterns suggests a correlation with the type of pathologic involvement (i.e., interstitial, affecting the alveolar walls and the interstitial tissue; alveolar, involving filling of the alveolar spaces), such radiographic-pathologic correlations are often lacking. Nevertheless, many diffuse lung diseases are characterized by one of these radiographic patterns, and the particular pattern may provide clues about the underlying type or cause of disease.

An interstitial pattern generally is described as reticular or reticulonodular, consisting of an interlacing network of linear and small nodular densities. In contrast, an alveolar pattern appears fluffier, and the outlines of air-filled bronchi coursing through the alveolar densities are often seen. This latter finding is called an air bronchogram and is due to air in the bronchi being surrounded and outlined by alveoli that are filled with fluid. This finding does not occur with a purely interstitial pattern. Examples of chest radiographs that show diffuse abnormality as a result of interstitial disease and alveolar filling are shown in Figures 3-6 and 3-7, respectively.

Two additional terms used to describe patterns of increased density are worth mentioning. A nodular pattern refers to the presence of multiple discrete, typically spherical, nodules. A uniform pattern of relatively small nodules several millimeters or less in diameter is often called a miliary pattern, as can be seen with hematogenous (bloodborne) dissemination of tuberculosis throughout the lungs. Alternatively, the nodules can be larger (e.g., > 1 cm in diameter), as seen with hematogenous metastasis of carcinoma to the lungs. Another common term is ground-glass, used to describe a hazy, translucent appearance to the region of increased density. Although the term can be used to describe a region or a pattern of increased density on a plain chest radiograph, it is more commonly used when describing abnormalities seen on computed tomography (CT) of the chest.

Although the preceding focus on some typical abnormalities provides an introduction to pattern recognition on a chest radiograph, the careful examiner must also use a systematic approach in analyzing the film. A chest radiograph shows not only the lungs; radiographic examination also may reveal changes in bones, soft tissues, the heart, other mediastinal structures, and the pleural space.

Computed Tomography

Compared with the plain chest radiograph, CT of the chest provides greater anatomic detail but is more expensive and exposes patients to a significantly higher dose of radiation. With this technique, a narrow beam of x-rays is passed through the patient and sensed by a rotating detector on the other side of the patient. The beam is partially absorbed within the patient, depending on the density of the intervening tissues. Computerized analysis of the information received by the detector allows a series of cross-sectional images to be constructed (Fig. 3-8). Use of different “windows” allows different displays of the collected data, depending on the densities of the structures of interest. With the technique of helical (spiral) CT scanning, the entire chest is scanned continuously (typically during a single breathhold and using multiple detectors) as the patient’s body is moved through the CT apparatus (the gantry).

CT is particularly useful for detecting subtle differences in tissue density that cannot be distinguished by conventional radiography. In addition, the resolution of the images and the cross-sectional views obtained from the slices provide better definition and more precise location of abnormalities.

Chest CT is used extensively in evaluating pulmonary nodules and the mediastinum. It is also quite valuable in characterizing chest wall and pleural disease. As the technology has advanced, CT has become progressively more useful in the diagnostic evaluation of various diseases affecting the pulmonary parenchyma and the airways. With high-resolution CT, the thickness of individual cross-sectional images is reduced to 1 to 2 mm instead of the traditional 5 to 10 mm. As a result, exceptionally fine detail can be seen, allowing earlier recognition of subtle disease and better characterization of specific disease patterns (Fig. 3-9).

In the last decade, computed tomographic angiography (CTA) has become important in the diagnosis of pulmonary emboli. This technique, in which the pulmonary arterial system is visualized by helical CT scanning following injection of radiographic contrast into a peripheral vein, has been increasingly used in place of both perfusion lung scanning and traditional pulmonary angiography (see later.) Its use is attractive because CTA is more likely to be diagnostic than perfusion scanning, and it is less invasive than traditional pulmonary angiography. Although CTA may not be as sensitive as traditional angiography for detecting emboli in relatively small pulmonary arteries, ongoing improvements in CT scanner technology have led to better identification of clots in progressively smaller pulmonary arteries.

Sophisticated software protocols now allow images obtained by CT scanning to be reconstructed and presented in any plane that best displays the abnormalities of interest. Additionally, three-dimensional images are produced from the data acquired by CT scanning. For example, a three-dimensional view of the airways can be displayed in a manner resembling what is seen inside the airway lumen during bronchoscopy (described later in this chapter). This methodology creates an imaging tool that has been dubbed virtual bronchoscopy.

Magnetic Resonance Imaging

Another technique available for evaluation of intrathoracic disease is magnetic resonance imaging (MRI). The physical principles of MRI are complicated and beyond the training of most physicians and students, but are discussed here briefly. The interested reader is referred to other sources for an in-depth discussion of MRI (see References). In brief, the technique depends on the way nuclei within a stationary magnetic field change their orientation and release energy delivered to them by a radiofrequency pulse. The time required to return to the baseline energy state can be analyzed by a complex computer algorithm, and a visual image created.

MRI has several important features in the evaluation of intrathoracic disease. First, flowing blood produces a “signal void” and appears black, so blood vessels can be readily distinguished from nonvascular structures without the need to use intravenous contrast agents. Second, images can be constructed in any plane so that the information obtained can be displayed as sagittal, coronal, or transverse (cross-sectional) views. Third, differences can be seen between normal and diseased tissues that are adjacent to each other, even when they are of the same density and therefore cannot be distinguished by routine radiography or CT. Some of these features are illustrated in Figure 3-10.

MRI scanning is expensive, so it generally is used when it can provide information not otherwise obtainable by less expensive, equally noninvasive means. Although MRI is newer than CT, it does not replace CT; rather, it often provides complementary diagnostic information. It can be a valuable tool in evaluating hilar and mediastinal disease as well as in defining intrathoracic disease that extends to the neck or the abdomen. On the other hand, it is less useful than CT in evaluating both pulmonary parenchymal disease and pulmonary emboli. However, knowledge about the power and limitations of this technique continues to grow, and applications are likely to expand with further refinements in technology.

Lung Scanning

Injected or inhaled radioisotopes readily provide information about pulmonary blood flow and ventilation. Imaging of the γ radiation from these isotopes produces a picture showing the distribution of blood flow and ventilation throughout both lungs (Fig. 3-11). Other isotopes have been used for detecting and evaluating infectious, inflammatory, and neoplastic processes affecting the lungs.

Perfusion and Ventilation Scanning

For lung perfusion scanning, the most common technique involves injecting aggregates or microspheres of human albumin labeled with a radionuclide, usually technetium 99m, into a peripheral vein. These particles, which are approximately 10 to 60 µm in diameter, travel through the right side of the heart, enter the pulmonary vasculature, and become lodged in small pulmonary vessels. Only areas of the lung receiving perfusion from the pulmonary arterial system demonstrate uptake of the tracer, whereas nonperfused regions show no uptake of the labeled albumin.

For ventilation scanning, a gaseous radioisotope, usually xenon 133, is inhaled, and the sequential pictures obtained show how the gas distributes within the lung. Pictures obtained at different times after inhalation reveal information about gas distribution after the first breath (wash-in phase), after a longer time of breathing the gas (equilibrium phase), and after the patient again breathes air to eliminate the radioisotope (wash-out phase). Ventilation scanning shows which regions of the lungs are being ventilated and any significant localized problems with expiratory airflow and “gas trapping” of the radioisotope during the wash-out phase.

Perfusion and ventilation scans are chiefly performed for two reasons: detection of pulmonary emboli and assessment of regional lung function. When a pulmonary embolus occludes a pulmonary artery, blood flow ceases to the lung region normally supplied by that vessel, and a corresponding perfusion defect results. Generally, ventilation is preserved, and a ventilation scan does not show a corresponding ventilation defect. In practice, many pieces of information are considered in the interpretation of the scan, including the appearance of the chest radiograph and the size and distribution of the defects on the perfusion scan. These issues are discussed in greater detail in Chapter 13.

Scans to assess regional lung function are sometimes performed before surgery involving resection of a part of the lung, usually one or more lobes. By visualizing which areas of lung receive ventilation and perfusion, the physician can determine how much the area to be resected is contributing to overall lung function. When the scanning techniques are used in conjunction with pulmonary function testing, the physician can approximately predict postoperative pulmonary function, which is a guide to postoperative respiratory problems and impairment.

Positron Emission Tomography (Fluorodeoxyglucose Scanning)

On the basis of the principle that malignant tumors typically exhibit increased metabolic activity, scanning following injection of the radiolabeled glucose analog 18-fluorodeoxyglucose (FDG) has been used as a way of identifying malignant lesions in the lungs and mediastinum. Malignant cells, as a consequence of their increased uptake and use of glucose, take up the FDG more rapidly than surrounding normal cells. Because the FDG has been chemically modified, it cannot be metabolized beyond the initial phosphorylation step and is trapped within the cell. The radiolabeled FDG emits positrons that are detected by positron emission tomography (PET) using a specialized imaging system, or by adapting a γ camera for imaging of positron-emitting radionuclides. PET imaging with FDG has been used primarily for evaluation of solitary pulmonary nodules and for staging of lung cancer, particularly for mediastinal lymph node involvement. However, the distinction between benign and malignant disease is not perfect, and false-negative and false-positive results can be seen with hypometabolic malignant lesions and highly active inflammatory lesions, respectively. PET scans can be performed in conjunction with CT scans, allowing direct correlation of specific lesions visible on CT scan with their corresponding FDG uptake.

Pulmonary Angiography

Pulmonary angiography is a radiographic technique in which a catheter is guided from a peripheral vein through the right atrium and ventricle and into the main pulmonary artery or one of its branches. A radiopaque dye is injected, and the pulmonary arterial tree is visualized on a series of rapidly exposed chest films (Fig. 3-12). This test is primarily used for diagnosing pulmonary embolism. A clot in a pulmonary vessel appears either as an abrupt termination (“cutoff”) of the vessel or as a filling defect within its lumen. Previously, pulmonary angiography was often used when the diagnosis of pulmonary embolism was uncertain after lung scanning, or CTA was inconclusive. However, with advances in CT techniques, a pulmonary angiogram is rarely needed.

The pulmonary angiogram has other uses, including investigation of congenital vascular anomalies and invasion of a vessel by tumor. However, use of the angiogram in these situations is also quite infrequent.

Ultrasonography

The ability of different types of tissue to transmit sound and of tissue interfaces to reflect sound has made ultrasonography useful for evaluating a variety of body structures. A piezoelectric crystal generates sound waves, and the reflected echoes are detected and recorded by the same crystal. Images are displayed on a screen and can be captured for a permanent record.

The heart is the intrathoracic structure most frequently studied by ultrasonography, but the technique is also useful in evaluating pleural disease. In particular, ultrasonography is capable of detecting small amounts of pleural fluid and is often used to guide placement of a needle for sampling a small amount of this fluid. Additionally, it can detect walled-off compartments (loculations) within pleural effusions and distinguish fluid from pleural thickening.

Ultrasonography is capable of localizing the diaphragm and detecting disease immediately below the diaphragm, such as a subphrenic abscess. Ultrasonography is not useful for defining structures or lesions within the pulmonary parenchyma, because the ultrasound beam penetrates air poorly.

Bronchoscopy

Direct visualization of the airways is possible by bronchoscopy, originally performed with a hollow, rigid metal tube, but now much more commonly with a thin, flexible instrument (Fig. 3-13). The flexible instrument transmits images either via flexible fiberoptic bundles (traditional fiberoptic bronchoscope) or more commonly via a digital chip at the tip of the bronchoscope that displays the images on a monitor screen. Because the bronchoscope is flexible, the bronchoscopist can bend the tip with a control lever and maneuver into airways at least down to the subsegmental level.

The bronchoscopist can obtain an excellent view of the airways (Fig. 3-14) and collect a variety of samples for cytologic, pathologic, and microbiologic examination. Sterile saline can be injected through a small hollow channel in the bronchoscope and suctioned back into a collection chamber. This technique, called bronchial washing, samples cells and, if present, microorganisms from the lower respiratory tract. When the bronchoscope is passed as far as possible and wedged into an airway before saline is injected, the washings are able to sample the contents of the alveolar spaces; this technique is called bronchoalveolar lavage (BAL).

A long, flexible wire instrument with a small brush at the tip can be passed through the hollow channel of the bronchoscope. The surface of a lesion within a bronchus can be brushed and the cells collected or smeared onto a slide for cytologic examination. Brushes are frequently passed into diseased areas of the lung parenchyma, and the material collected by the bristles is subjected to cytologic and microbiologic analysis.

A needle at the end of a long catheter passed through the bronchoscope can puncture an airway wall and sample cells from lymph nodes or lesions adjacent to the airway. This technique, called transbronchial needle aspiration, can be used to obtain malignant cells from mediastinal lymph nodes in the staging of known or suspected lung cancer. Using an ultrasound probe within the airway during bronchoscopy (endobronchial ultrasound) can help the bronchoscopist localize mediastinal lymph nodes external to the airway and therefore greatly assist with accurate needle placement into the node for transbronchial needle aspiration.

With a small biopsy forceps passed through the bronchoscope, the clinician can extract a biopsy specimen from a lesion visualized on the bronchial wall (endobronchial biopsy). The forceps can also be passed through a small bronchus into the lung parenchyma to obtain a small specimen of lung tissue. This procedure, known as a transbronchial biopsy, yields specimens that are small but have a sizable number of alveoli. Fluoroscopy can be used during the procedure to better localize the position of the biopsy forceps relative to the desired biopsy site, either a discrete lesion or an area representative of more diffuse disease.

There are many indications for bronchoscopy, usually with a flexible instrument, although the rigid instrument is used under some circumstances. When appropriate, the flexible instrument is preferred because the procedure can be performed using only mild sedation and the patient need not be hospitalized. In contrast, rigid bronchoscopy is performed only under general anesthesia. Some indications for bronchoscopy include (1) evaluation of a suspected endobronchial malignancy, (2) sampling of an area of parenchymal disease by BAL, brushings, or biopsy, (3) evaluation of hemoptysis, and (4) removal of a foreign body (with special instruments that can be passed through the bronchoscope and are capable of retrieving objects). A variety of newer therapeutic modalities are being delivered to the airways via either flexible or rigid bronchoscopic techniques. These modalities include laser techniques for shrinking endobronchial tumors causing airway obstruction; placement of stents to maintain patency of airways having a compromised or obstructed lumen; procedures for dilation of strictures; placement of radioactive seeds directly into malignant airway lesions (brachytherapy); and delivery of electric current (electrocautery), low temperature (cryotherapy), or certain wavelengths of light (photodynamic therapy) to endobronchial masses. Deployment of these novel therapeutic opportunities has spawned a relatively new and rapidly evolving area of subspecialization within pulmonary medicine called interventional pulmonology.

During the past 40 years or so, bronchoscopy has become a common and useful technique in evaluating and managing pulmonary disease. Even though the physician who first suggested placing a tube into the larynx and bronchi was censured in 1847 for proposing a technique that is “an anatomical impossibility and an unwarrantable innovation in practical medicine,” bronchoscopy generally is well tolerated, and complications are infrequent.

Evaluation on a Microscopic Level

Microscopy often provides the definitive diagnosis of pulmonary disease suggested by the history, physical examination, or imaging of the chest. Several types of disorders are particularly amenable to diagnosis by microscopy: lung tumors (by either histology or cytology), pulmonary infection (by microscopic identification of a specific organism), and a variety of miscellaneous pulmonary diseases, particularly those affecting the interstitium of the lung (by histology). Frequently, when a diagnosis is uncertain, the same techniques are used to obtain samples that are processed both for histologic (or cytologic) examination and for identification of microorganisms. This section provides a discussion of how specimens are obtained and then considers how the specimens are processed.

Obtaining Specimens

The three main types of specimens the physician uses for microscopic analysis in diagnosing the patient with lung disease are (1) tracheobronchial secretions, (2) tissue from the lung parenchyma, and (3) fluid or tissue from the pleura. A number of methods are available for obtaining each of these types of specimens, and knowledge of the yield and the complications determines the most appropriate method.

The easiest way to obtain a specimen of tracheobronchial secretions is to collect sputum expectorated spontaneously by the patient. The sample can be used for identifying inflammatory or malignant cells and for staining (and culturing) microorganisms. Collecting sputum sounds simple, but it presents several potential problems. First, the patient may not have any spontaneous cough and sputum production. If this is the case, a strong cough that produces sputum frequently can be induced by having the patient inhale an irritating aerosol, such as hypertonic saline. Second, what is thought to be sputum originating from the tracheobronchial tree frequently is either nasal secretions or “spit” expectorated from the mouth or the back of the throat. Finally, as a result of passage through the mouth, even a good, deep sputum specimen is contaminated by the multiplicity of microorganisms that reside in the mouth. Because of this contamination, care is required in interpreting the results of sputum culture, particularly with regard to the normal flora of the upper respiratory tract. Despite these limitations, sputum remains a valuable resource when looking for malignancy and infectious processes such as bacterial pneumonia and tuberculosis.

Tracheobronchial secretions also can be obtained by two other routes: transtracheal aspiration and bronchoscopy. With transtracheal aspiration, a small plastic catheter is passed inside (or over) a needle inserted through the cricothyroid membrane and into the trachea. The catheter induces coughing, and secretions are collected either with or without the additional instillation of saline through the catheter. This technique avoids the problem of contamination by mouth and upper airway flora. It also allows collection of a sample even when the patient has no spontaneous sputum production. However, the technique is not without risk. Bleeding complications and, to a lesser extent, subcutaneous emphysema (air dissecting through tissues in the neck) are potentially serious sequelae. Because of these potential complications, the availability of alternative methods of sampling, and physicians’ inexperience with the procedure, transtracheal aspiration is now rarely performed.

Bronchoscopy, generally with a flexible instrument, is a suitable way to obtain tracheobronchial secretions. It has the additional benefit of allowing visualization of the airways. Bronchoscopy has distinct advantages in collecting material for cytologic analysis because specimens can be collected from a localized area directly visualized with the bronchoscope. However, because the instrument passes through the upper respiratory tract, collection of specimens for culture is subject to contamination by upper airway flora. Specially designed systems with a protected brush can decrease contamination, and quantitating the bacteria recovered can be helpful in distinguishing upper airway contamination from true lower respiratory infection.

BAL has become an increasingly popular method for obtaining specimens from the lower respiratory tract. The fluid obtained by BAL has been used quite effectively for detecting P. jiroveci, particularly in patients with AIDS. In some diffuse parenchymal lung diseases (see Chapters 9 and 11), analysis of the cellular and biochemical components of BAL may provide information that is useful diagnostically and for research about basic disease mechanisms.

As is true of tracheobronchial secretions, tissue specimens for microscopic examination can be collected in numerous ways. A brush or a biopsy forceps can be passed through a bronchoscope. The brush is often used to scrape cells from the surface of an airway lesion, but it can also be passed more distally into the lung parenchyma to obtain specimens directly from a diseased area. The biopsy forceps is used in a similar fashion to sample tissue either from a lesion in the airway (endobronchial biopsy) or from an area of disease in the parenchyma (transbronchial biopsy, so named because the forceps must puncture a small bronchus to sample the parenchyma). In the case of bronchial brushing, the specimen that adheres to the brush is smeared onto a slide for staining and microscopic examination. For both endobronchial and transbronchial biopsies, the tissue obtained can be fixed and sectioned, and slides can be made for subsequent microscopic examination.

A lesion or diseased area in the lung parenchyma can be reached with a needle through the chest wall. This type of biopsy, called a percutaneous needle biopsy, is typically performed using simultaneous guidance by CT imaging. Depending on the type of needle used, a small sample may be aspirated or taken by biopsy. Bleeding and pneumothorax are potential complications, just as they are for a transbronchial biopsy with a bronchoscope.

Lung tissue is frequently obtained by a surgical procedure involving an approach through the chest wall. Traditionally, a surgeon made an incision in the chest wall, allowing direct visualization of the lung surface and removal of a small piece of lung tissue. This type of open lung biopsy has largely been supplanted by a less invasive procedure called thoracoscopy (video-assisted thoracic surgery or VATS). Video-assisted thoracic surgery involves placement of a thoracoscope and biopsy instruments through small incisions in the chest wall; a high-quality image obtained through the thoracoscope can be displayed on a monitor screen. The surgeon uses the video image as a guide for manipulating the instruments to obtain a biopsy sample of peripheral lung tissue or to remove a peripheral lung nodule.

Finally, fluid in the pleural space is frequently sampled in the evaluation of a patient with a pleural effusion. A small needle is inserted through the chest wall and into the pleural space, and fluid is withdrawn. The fluid can be examined for malignant cells and microorganisms. Chemical analysis of the fluid (see Chapter 15) often provides additional useful diagnostic information. A biopsy specimen of the parietal pleural surface (the tissue layer lining the pleural space) also may be obtained either blindly, with a special needle passed through the chest wall, or under direct visualization using a thoracoscope. The tissue can be used for microscopic examination and microbiologic studies.

Processing Specimens

Once specimens are obtained, the techniques of processing and types of examination performed are common to those used for many types of tissue and fluid specimens.

Diagnosis of pulmonary infections depends on smears and cultures of the material obtained, such as sputum, other samples of tracheobronchial secretions, or pleural fluid. The standard Gram stain technique often allows initial identification of organisms, and inspection may reveal inflammatory cells (particularly polymorphonuclear leukocytes) and upper airway (squamous epithelial) cells, the latter indicating contamination of sputum by upper airway secretions. Final culture results provide definitive identification of an organism, but the results must always be interpreted with the knowledge that the specimen may be contaminated, and that what is grown is not necessarily causally related to the clinical problem.

Identification of mycobacteria, the causative agent for tuberculosis, requires special staining and culturing techniques. Mycobacteria are stained by agents such as carbolfuchsin or auramine-rhodamine, and the organisms are almost unique in their ability to retain the stain after acid is added. Hence, the expression acid-fast bacilli is used commonly when referring to mycobacteria. Frequently used staining methods are the Ziehl-Neelsen stain or a modification called the Kinyoun stain. A more sensitive and faster way to detect mycobacteria involves use of a fluorescent dye such as auramine-rhodamine. Mycobacteria take up the dye and fluoresce and can be detected relatively easily even when present in small numbers. Because mycobacteria grow slowly, they may require 6 to 8 weeks for growth and identification on culture media.

Organisms other than the common bacterial pathogens and mycobacteria often require other specialized staining and culture techniques. Fungi may be diagnosed by special stains, such as methenamine silver or periodic acid–Schiff stains, applied to tissue specimens. Fungi also can be cultured on special media favorable to their growth. P. jiroveci, a pathogen now classified as a unique category of fungi (see Chapter 25) and most common in patients with impaired defense mechanisms, is stained in tissue and tracheobronchial secretions by methenamine silver, toluidine blue, or Giemsa stain. An immunofluorescent stain using monoclonal antibodies against Pneumocystis is particularly sensitive for detecting the organism in sputum and BAL fluid. The organism identified in 1976 as Legionella pneumophila, the causative agent of Legionnaires’ disease, can be diagnosed by silver impregnation or immunofluorescence staining. The organism also can be grown (with difficulty) on some special media.

Cytologic examination for malignant cells is available for expectorated sputum, specimens obtained by needle aspiration, bronchial washings or brushings obtained with a bronchoscope, and pleural fluid. A specimen can be smeared directly onto a slide (as with a bronchial brushing), subjected to concentration (bronchial washings, pleural fluid), or digested (sputum) prior to being smeared on the slide. The slide then is stained by the Papanicolaou technique, and the cells are examined for findings suggestive or diagnostic of malignancy.

Pathologic examination of tissue sections obtained by biopsy is most useful for diagnosis of malignancy or infection, as well as for a variety of other processes affecting the lungs and pleura. In many circumstances, examination of tissue obtained by biopsy is the gold standard for diagnosis, although even biopsy results can show false-negative findings or yield misleading information.

Tissue obtained by biopsy is routinely stained with hematoxylin and eosin for histologic examination. A wide assortment of other stains is available that more or less specifically stain collagen, elastin, and a variety of microorganisms. Further discussion of the specific techniques and stains can be found in standard pathology textbooks.

Recently, state-of-the-art molecular biology techniques have been applied to respiratory specimens for diagnosis of certain types of respiratory tract infection. When compared with traditional culture methods, the advantages of molecular techniques include rapid detection and specific identification of pathogens, as well as minimizing the hazard to laboratory personnel of exposure to growing pathogens. Techniques based on nucleic acid amplification can be used directly on respiratory specimens for rapid (3–4 hour) detection of the DNA or RNA of some pathogens. For example, the polymerase chain reaction uses specific synthetic oligonucleotide “primer” sequences and DNA polymerase to amplify DNA unique to a specific organism. If the particular target DNA sequence is present, even if only from a single organism, sequential amplification allows production of millions of copies that can be detected by gel electrophoresis. This technique can be applied to samples such as sputum and BAL, providing an exquisitely sensitive test for identifying organisms such as mycobacteria, P. jiroveci, and cytomegalovirus. In addition, oligonucleide hybridization probes allow rapid identification of organisms that have been cultured from clinical specimens. These newer molecular techniques are becoming more readily available and are likely to see increasing clinical use over time.

Assessment on a Functional Level

Pulmonary evaluation on a macroscopic or microscopic level aims at a diagnosis of lung disease, but neither can determine the extent to which normal lung functions are impaired. This final aspect of evaluation adds an important dimension to overall patient assessment because it reflects how much the disease may limit daily activities. The two most common methods for determining a patient’s functional status are pulmonary function testing and evaluation of gas exchange (using either arterial blood gases or pulse oximetry). In addition, a variety of measurements taken during exercise can help determine how much exercise a patient can perform and what factors contribute to any limitation of exercise. Many other types of functional studies are useful for clinical or research purposes, but they are not discussed in this chapter.

Pulmonary Function Tests

Pulmonary function testing provides an objective method for assessing functional changes in a patient with known or suspected lung disease. With the results of tests that are widely available, the physician can answer several questions: (1) Does the patient have significant lung disease sufficient to cause respiratory impairment and account for his or her symptoms? (2) What functional pattern of lung disease does the patient have—restrictive or obstructive disease?

In addition, serial evaluation of pulmonary function allows the physician to quantify any improvement or deterioration in a patient’s functional status. Information obtained from such objective evaluation may be essential in deciding when to treat a patient with lung disease and in assessing whether a patient has responded to therapy. Preoperative evaluation of patients can be useful in predicting which patients are likely to have significant postoperative respiratory problems and which are likely to have adequate pulmonary function after lung resection.

Three main categories of information can be obtained with routine pulmonary function testing:

Before examining how these tests indicate what type of functional lung disease a patient has, we briefly describe the tests themselves and how they are performed.

Lung Volumes

Although the lung can be subdivided into compartments in different ways, four volumes are particularly important (Fig. 3-15):

VC can be measured by having the patient exhale into a spirometer from TLC down to RV. By definition, the volume expired in this manner is the VC. However, because RV, FRC, and TLC all include the amount of gas left within the lungs even after a maximal expiration, these volumes cannot be determined simply by having the patient breathe into a spirometer. To quantify these volumes, a variety of methods can measure one of the three volumes, and the other two can then be calculated or derived from the spirometric tracing. Two methods are described here:

In many circumstances, dilution methods are adequate for determining lung volumes. However, for patients who have air spaces within the lung that do not communicate with the bronchial tree (e.g., bullae), the inhaled gas is not diluted in these noncommunicating areas, and the measured lung volumes determined by dilution methods are falsely low. In such situations, body plethysmography gives a more accurate reflection of intrathoracic gas volume inasmuch as it does not depend on ready communication of all peripheral air spaces with the bronchial tree.

Flow Rates

Measurement of flow rates on routine pulmonary function testing involves assessing airflow during maximal forced expiration—that is, with the patient blowing out as hard and as fast as possible from TLC down to RV. The volume expired during the first second of such a forced expiratory maneuver is called the forced expiratory volume in 1 second (FEV1) (Fig. 3-16). When pulmonary function tests are interpreted, FEV1 is routinely compared with VC, or with VC specifically measured during the forced expiratory maneuver, called the forced vital capacity (FVC). In interpreting flow rates, the ratio between these two measurements (FEV1/VC or FEV1/FVC) is the most important number used to determine the presence of obstruction to airflow. Another parameter often calculated from the forced expiratory maneuver is the maximal midexpiratory flow rate (MMFR), which is the rate of airflow during the middle one half of the expiration (between 25% and 75% of the volume expired during the FVC). MMFR is frequently called the forced expiratory flow (FEF) between 25% and 75% of vital capacity (FEF25%–75%). The MMFR or FEF25%–75% is a relatively sensitive index of airflow obstruction and may be abnormal when the FEV1/FVC ratio is still preserved.

Diffusing Capacity

The diffusing capacity is a measurement of the rate of transfer of gas from the alveolus to hemoglobin within a capillary, measured in relation to the driving pressure of the gas across the alveolar-capillary membrane. Small concentrations of carbon monoxide are generally used for this purpose. Carbon monoxide combines readily with hemoglobin, and the rate of transfer of gas from the alveolus to the capillary depends on movement through the alveolar-capillary membrane and the amount of hemoglobin available for binding the carbon monoxide.

The measurement obtained during a diffusing capacity test is primarily dependent on the number of functioning alveolar-capillary units—that is, the surface area available for gas exchange—and the volume of blood (hemoglobin) in the pulmonary capillaries available to bind carbon monoxide. Despite the name, as the test is performed in clinical practice, the influence of the thickness of the alveolar-capillary membrane on the measured value is actually minimal. Since the uptake of carbon monoxide by hemoglobin is dependent on the hemoglobin concentration in the blood, patients with anemia may have a depressed diffusing capacity measurement even if the lungs are normal. Therefore, the observed value is generally corrected for the patient’s hemoglobin level.

In practice, the diffusing capacity is commonly decreased in three categories of disease in which surface area for gas exchange is lost, pulmonary capillary blood volume is decreased, or both: (1) emphysema, (2) interstitial lung disease, and (3) pulmonary vascular disease. In disorders that affect only the airways and not pulmonary parenchymal tissue (e.g., asthma, chronic bronchitis), diffusing capacity is generally preserved. On the other hand, the diffusing capacity may be elevated in cases of recent intrapulmonary hemorrhage as a result of uptake of carbon monoxide by hemoglobin in the erythrocytes within the alveolar spaces.

Interpretation of Normality in Pulmonary Function Testing

Interpretation of pulmonary function tests necessarily involves a qualitative judgment about normality or abnormality on the basis of quantitative data obtained from these tests. To arrive at a relatively objective judgment, the patient’s values are compared with normal standards established for each test, based on measurements in large numbers of normal nonsmoking control subjects. Separate regression equations for men and women have been constructed to fit the data obtained from these normal control subjects. Separate race/ethnicity-specific equations are available because of slight differences in pulmonary function in normal individuals of different races and ethnicities. A “normal” or predicted value for a test in a given patient can be determined by inputting the patient’s age and height into the appropriate regression equation.

The standards for determining what constitutes the “lower limits of normal” for a particular test vary among laboratories. Most laboratories now consider values below the bottom 5th percentile of a normal reference group (also called the “95% confidence interval”) to be abnormal, whereas others consider an observed value to be abnormal if it is less than 80% of the predicted value. No matter which criteria are used, all the data must be considered to determine whether certain patterns are consistently present. Interpretation of any test in isolation, with the assumption that a patient with a value of 79% has lung disease, but a patient with a value of 81% is disease free, is obviously dangerous.

As a general rule, the normal FEV1/VC or FEV1/FVC ratio is 0.70 or greater. An individual without lung disease should, during the first second of a maximal exhalation, be able to exhale at least 70% of the total volume exhaled. However, because the normal ratio can decrease with age, the actual value ideally should be considered abnormal if it is less than the 95% confidence interval for that patient’s age.

Patterns of Pulmonary Function Impairment

In the analysis of pulmonary function tests, abnormalities usually are categorized as one of two patterns (or a combination of the two): (1) an obstructive pattern, characterized mainly by obstruction to airflow, and (2) a restrictive pattern, with evidence of decreased lung volumes but no airflow obstruction.

An obstructive pattern, as seen in patients with asthma, chronic bronchitis, and emphysema, consists of a decrease in rates of expiratory airflow and usually manifests as a decrease in MMFR and FEV1/FVC ratio (Fig. 3-17). There is generally a high RV and an increased RV/TLC ratio, indicating air trapping due to closure of airways during forced expiration (Fig. 3-18). Hyperinflation, reflected by an increased TLC, is often found, particularly in patients with emphysema. Diffusing capacity tends to be decreased in patients who have loss of alveolar-capillary bed (as seen in emphysema) but not in those without loss of available surface area for gas exchange (as in chronic bronchitis and asthma).

The hallmark of restrictive disease is a reduction in lung volumes, whereas expiratory airflow is normal (see Fig. 3-18). Therefore, TLC, RV, VC, and FRC all tend to be reduced, whereas MMFR and FEV1/FVC are preserved. In some patients with significant loss of volume resulting from restrictive disease, MMFR is decreased because less volume is available to generate a high flow rate. Interpreting a low MMFR in the face of significant restrictive disease is difficult unless MMFR is clearly decreased out of proportion to the decrease in lung volumes.

A wide variety of parenchymal, pleural, neuromuscular, and chest wall diseases can demonstrate a restrictive pattern. Certain clues are useful in distinguishing among these causes of restriction. For example, a decrease in the diffusing capacity for carbon monoxide suggests loss of alveolar-capillary units and points toward interstitial disease as the cause of the restrictive pattern. The finding of a relatively high RV can indicate either expiratory muscle weakness or a chest wall abnormality that makes the thoracic cage particularly stiff (noncompliant) at low volumes.

Although lung diseases often occur with one or the other of these patterns, a mixed picture of obstructive and restrictive disease can be present, making interpretation of the tests much more complex. These tests do not directly reflect a patient’s overall capability for O2 and CO2 exchange, which is assessed by measurement of arterial blood gases.

A simplified guide to the interpretation of pulmonary function tests is presented along with several sample problems in Appendix B.

Other Tests

A significant amount of work was performed in the past to develop tests that detect early obstruction to airflow, particularly when it is due to small or peripheral airways obstruction. Such tests include maximal expiratory flow-volume loops, analysis of closing volume, and frequency-dependent dynamic compliance. Unfortunately, pathologic studies have shown that the correlation between tests of “small airways function” and the actual presence of disease in small airways (as demonstrated by histopathologic specimens) is inconsistent, making the value of these tests unclear. Despite this limitation, the maximal expiratory flow-volume loop is a test with sufficient routine clinical applicability to warrant a short discussion here.

The flow-volume loop is a graphic record of maximal inspiratory and maximal expiratory maneuvers. However, rather than the graph of volume versus time that is given with usual spirometric testing, the flow-volume loop has a plot of flow (on the Y-axis) versus volume (on the X-axis). Although the initial flows obtained during the early part of a forced expiratory maneuver are effort dependent, the flows during the latter part of the maneuver are effort independent and primarily reflect the mechanical properties of the lungs and the resistance to airflow.

In patients with evidence of airflow obstruction, flow rates at a given volume are decreased, often giving the curve a “scooped out” or coved appearance. The flow data obtained from maximal expiratory flow-volume loops can be interpreted quantitatively (comparing observed flow rates at specified volumes with predicted values) or qualitatively (visually analyzing the shape and concavity of the expiratory portion of the curve). When routine spirometric parameters reflecting airflow obstruction (MMFR, FEV1/FVC) are abnormal, the flow-volume loop generally is abnormal. However, in patients with early airflow obstruction, perhaps localized to small airways, the contour of the terminal part of the expiratory curve may be abnormal even when the FEV1/FVC ratio is normal. Examples of flow-volume loops in a normal patient and in a patient with obstructive lung disease are shown in Figure 3-19.

Another important application of flow-volume loops is for diagnosing and localizing upper airway obstruction. By analyzing the contour of the inspiratory and expiratory portions of the curve, the obstruction can be categorized as fixed or variable, as well as intrathoracic or extrathoracic. In a fixed lesion, changes in pleural pressure do not affect the degree of obstruction, and a limitation in peak airflow (a plateau) is seen on both the inspiratory and expiratory portions of the curve. In a variable lesion, the amount of obstruction is determined by the location of the lesion and the effect of alterations in pleural and airway pressure with inspiration and expiration (Fig. 3-20). A variable intrathoracic lesion is characterized by expiratory limitation of airflow and a plateau on the expiratory portion of the flow-volume curve, whereas a variable extrathoracic lesion demonstrates inspiratory limitation of airflow and a plateau on the inspiratory portion of the flow-volume curve (Fig. 3-21).

A test of airflow that is commonly used in clinical practice, particularly in asthmatics as a method to follow severity of disease, is the peak expiratory flow rate. In performing this test, the patient blows out from TLC as hard as possible into a simple, readily available device that records the maximal (or peak) expiratory flow rate achieved. Patients with asthma frequently perform and record serial measurements of the test at home as a way of self-monitoring their disease. A significant drop in the peak flow rate from the usual baseline often indicates an exacerbation of the disease and the need for escalating or intensifying the therapeutic regimen.

Arterial Blood Gases

Despite the extensive information provided by pulmonary function tests, they do not show the net effect of lung disease on gas exchange, which is easily assessed by studies performed on arterial blood. Arterial blood can be conveniently sampled by needle puncture of a radial artery or, less commonly and with more potential risk, of a brachial or femoral artery. The blood is collected into a heparinized syringe (to prevent clotting), and care is taken to expel air bubbles from the syringe and analyze the sample quickly (or to keep it on ice until analyzed). Three measurements are routinely obtained: arterial PO2, PCO2, and pH.

Arterial PO2 normally is between 80 and 100 mm Hg, but the expected value depends significantly on the patient’s age and the simultaneous level of PCO2 (reflecting alveolar ventilation, an important determinant of alveolar and, secondarily, arterial PO2). From the arterial blood gases, the alveolar-arterial oxygen gradient (AaDO2) can be calculated, as discussed in Chapter 1. Normally the difference between alveolar and arterial PO2 is less than 10 to 15 mm Hg in a healthy young person, and this difference increases with patient age. The oxygen content of the blood does not begin to fall significantly until the arterial PO2 drops below approximately 60 mm Hg (see Chapter 1). Therefore, an abnormally low PO2 generally does not affect O2 transport to the tissues until it drops below this level and the saturation falls.

The range of normal arterial PCO2 is approximately 36 to 44 mm Hg, with a corresponding pH between 7.44 and 7.36. Respiratory and metabolic factors interact closely in determining these numbers and a patient’s acid-base status. PCO2 and pH should be interpreted simultaneously because both pieces of information are necessary to distinguish respiratory from metabolic abnormalities.

When PCO2 rises acutely, carbonic acid is formed and the concentration of H+ also rises; therefore pH falls. As a general rule, pH falls approximately 0.08 (or, rounded off, approximately 0.1) for each 10 mm Hg increase in PCO2. Such a rise in PCO2 with an appropriate decrease in pH indicates an acute respiratory acidosis. Conversely, a drop in PCO2 resulting from hyperventilation, with the attendant increase in pH, indicates an acute respiratory alkalosis. With time (hours to days), the kidneys attempt to compensate for a prolonged respiratory acidosis by retaining bicarbonate (HCO3) or by excreting bicarbonate in the case of a prolonged respiratory alkalosis. In either case, the compensation returns the pH value toward but not entirely to normal, and the disturbance is termed a chronic (i.e., compensated) respiratory acidosis or alkalosis.

On the other hand, a patient who is producing too much (or excreting too little) acid has a primary metabolic acidosis. Conversely, an excess of HCO3 (equivalent to a decrease in H+) defines a primary metabolic alkalosis. In the same way the kidneys attempt to compensate for a primary respiratory acid-base disturbance, respiratory elimination of CO2 is adjusted to compensate for metabolic acid-base disturbances. Hence, metabolic acidosis stimulates ventilation, CO2 elimination, and a rise in the pH toward the normal level, whereas metabolic alkalosis suppresses ventilation and CO2 elimination, and the pH falls toward the normal range.

In practice, the clinician considers three fundamental questions in defining all acid-base disturbances: (1) Is there an acidosis or alkalosis? (2) Is the primary disorder of respiratory or metabolic origin? (3) Is there evidence for respiratory or metabolic compensation? Table 3-2 summarizes the findings in the major types of acid-base disturbances. Unfortunately, matters are not always so simple in clinical practice, and it is quite common to see complex mixtures of acid-base disturbances in patients who have several diseases and are receiving a variety of medications.

Because of the discomfort and small risk of vessel injury with arterial puncture, there is interest in analyzing venous blood as a surrogate for arterial blood gas analysis. This practice has not been well studied at present. Early studies suggest that in hemodynamically stable patients (i.e., normal cardiac output and systemic blood pressure), venous blood samples have reasonable correlation with arterial HCO3 and pH. However, there is inadequate correlation between arterial and venous PCO2 and PO2. If the patient is critically ill or hemodynamically unstable, venous blood gases do not provide a good indicator of arterial values.

A simplified guide to the interpretation of arterial blood gases is presented along with several sample problems in Appendix C.

Pulse Oximetry

Although direct measurement of arterial blood gases provides the best method for assessing gas exchange, it requires collection of blood by arterial puncture. As already noted, sampling of arterial blood is uncomfortable for patients, and a small but finite risk is associated with arterial puncture. As a result, pulse oximetry, a noninvasive method for assessing arterial oxygen saturation of hemoglobin, has come into widespread use, particularly for hospitalized patients. The pulse oximeter is clipped onto a patient’s finger, and specific wavelengths of light are passed through the finger. Oxygenated and deoxygenated hemoglobin have different patterns of light absorption, and measurement of the pulsatile absorption of light by arteriolar blood passing through the finger allows quantifying the two forms of hemoglobin. However, certain limitations are inherent to pulse oximetry: (1) the oximeter measures O2 saturation rather than PO2, (2) no information is provided about CO2 elimination and acid-base status, and (3) the results typically are inaccurate in the presence of an abnormal hemoglobin such as carboxyhemoglobin, as seen in carbon monoxide poisoning.

Exercise Testing

Because limited exercise tolerance is frequently the most prominent symptom of patients with a variety of pulmonary problems, study of patients during exercise may provide valuable information about how much these patients are limited and why. Adding measurements of arterial blood gases during exercise provides an additional dimension and shows whether gas exchange problems (either hypoxemia or hypercapnia) contribute to the impairment. Pulse oximetry is also commonly used during exercise, particularly because it is noninvasive, but it provides less information than direct measurement of arterial blood gases.

Although any form of exercise is theoretically possible for the testing procedure, the patient usually is studied while exercising on a treadmill or stationary bicycle. Measurements that can be made at various points during exercise include work output, heart rate, ventilation, O2 consumption, CO2 production, expired gas tensions, and arterial blood gases. Analysis of these data often can distinguish whether ventilation, cardiac output, or problems with gas exchange (particularly hypoxemia) provide the major limitation to exercise tolerance. The results can guide the physician to specific therapy on the basis of the type of limitation found.

A simpler form of exercise often used to assess functional limitation is the 6-minute walk test. This test measures the distance a patient is able to walk (not jog or run) in 6 minutes. However, the test does not provide any information about the mechanism of exercise limitation. Although this test does not distinguish limitation due to lung disease from that attributable to other medical problems such as heart disease, peripheral vascular disease, or muscle weakness, it does provide an easily performed objective measure of a patient’s exercise tolerance and can be used to follow how a patient is doing over time, with or without treatment.

References

Physical Examination

Loudon, R, Murphy, RLH, Jr. Lung sounds. Am Rev Respir Dis. 1984;130:663–673.

Maitre, B, Similowski, T, Derenne, J-P. Physical examination of the adult patient with respiratory diseases: inspection and palpation. Eur Respir J. 1995;8:1584–1593.

Marrie, TJ, Brown, N. Clubbing of the digits. Am J Med. 2007;120:940–941.

Martin, L, Khalil, H. How much reduced hemoglobin is necessary to generate central cyanosis? Chest. 1990;97:182–185.

Murphy, RL. In defense of the stethoscope. Respir Care. 2008;53:355–369.

Myers, KA, Farquhar, DRE. Does this patient have clubbing? JAMA. 2001;286:341–347.

Pasterkamp, H, Kraman, SS, Wodicka, GR. Respiratory sounds. Advances beyond the stethoscope. Am J Respir Crit Care Med. 1997;156:974–987.

Vyshedskiy, A, Alhashem, RM, Paciej, R, et al. Mechanism of inspiratory and expiratory crackles. Chest. 2009;135:156–164.

Bronchoscopy

Becker, HD. Bronchoscopy: the past, the present, and the future. Clin Chest Med. 2010;31:1–18.

Bolliger, CT, Sutedja, TG, Strausz, J, et al. Therapeutic bronchoscopy with immediate effect: laser, electrocautery, argon plasma coagulation and stents. Eur Respir J. 2006;27:1258–1271.

Dooms, C, Seijo, L, Gasparini, S, et al. Diagnostic bronchoscopy: state of the art. Eur Respir Rev. 2010;19:229–236.

Haas, AR, Vachani, A, Sterman, DH. Advances in diagnostic bronchoscopy. Am J Respir Crit Care Med. 2010;182:589–597.

Meyer, KC, Raghu, G, Baughman, RP, et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012;185:1004–1014.

Sheski, FD, Mathur, PN. Endobronchial ultrasound. Chest. 2008;133:264–270.

Wahidi, MM, Herth, FJF, Ernst, A. State of the art. Interventional pulmonology. Chest. 2007;131:261–274.

Obtaining and Processing Specimens

Bartlett, JG. Diagnostic tests for agents of community-acquired pneumonia. Clin Infect Dis. 2011;52:S296–S304.

Dorman, SE. New diagnostic tests for tuberculosis: bench, bedside, and beyond. Clin Infect Dis. 2010;50:S173–S177.

Epstein, RL. Constituents of sputum: a simple method. Ann Intern Med. 1972;77:259–265.

Leslie, KO, Helmers, RA, Lanza, LA, et al. Processing and evaluation of lung biopsy specimens. Eur Respir Mon. 2000;5:55–62.

Mahony, JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev. 2008;21:716–747.

Mayaud, C, Cadranel, J. A persistent challenge: the diagnosis of respiratory disease in the non-AIDS immunocompromised host. Thorax. 2000;55:511–517.

Peterson, LR. Molecular laboratory tests for the diagnosis of respiratory tract infection due to Staphylococcus aureus. Clin Infect Dis. 2011;52:S361–S366.

Reynolds, HY. Use of bronchoalveolar lavage in humans: past necessity and future imperative. Lung. 2000;178:271–293.

Talbot, HK, Falsey, AR. The diagnosis of viral respiratory disease in older adults. Clin Infect Dis. 2010;50:747–751.

Assessment on a Functional Level

American Thoracic Society and American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167:211–277.

Arena, R, Sietsema, KE. Cardiopulmonary exercise testing in the clinical evaluation of patients with heart and lung disease. Circulation. 2011;123:668–680.

ATS statement. guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111.

Chupp, GL. Pulmonary function testing. (ed). Clin Chest Med. 2001;22:599–859.

Evans, SE, Scanlon, PD. Current practice in pulmonary function testing. Mayo Clin Proc. 2003;78:758–763.

Flesch, JD, Dine, CJ. Lung volumes. Measurement, clinical use, and coding. Chest. 2012;142:506–510.

Hughes, JMB, Pride, NB. Examination of the carbon monoxide diffusing capacity (DLCO) in relation to its KCO and VA components. Am J Respir Crit Care Med. 2012;186:132–139.

Hughes JMB, Pride NB, eds. Lung function tests: physiological principles and clinical applications. London: WB Saunders, 2000.

MacIntyre, N, Crapo, R, Viegi, G, et al. ATS/ERS Task Force Standardisation of the single breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26:720–735.

Miller, MR, Crapo, R, Hankinson, J, et al. General considerations for lung function testing. Eur Respir J. 2005;26:153–161.

Narins, RG, Emmett, M. Simple and mixed acid-base disorders: a practical approach. Medicine. 1980;59:161–187.

Palange, P, Ward, SA, Carlsen, K-H, et al. Recommendations on the use of exercise testing in clinical practice. Eur Respir J. 2007;29:185–209.

Pellegrino, R, Viegi, G, Brusasco, V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948–968.

Raffin, TA. Indications for arterial blood gas analysis. Ann Intern Med. 1986;105:390–398.

Wasserman, K. Diagnosing cardiovascular and lung pathophysiology from exercise gas-exchange. Chest. 1997;112:1091–1101.

Wasserman, K, Hansen, JE, Sue, DY, et al. Principles of exercise testing and interpretation: including pathophysiology and clinical applications, ed 5. Philadelphia: Lippincott Williams & Wilkins; 2012.

Williams, AJ. ABC of oxygen: assessing and interpreting arterial blood gases and acid-base balance. BMJ. 1998;317:1213–1216.