Chapter 14 Definition and Assessment of Dysfunctional Segmental Motion
Biomechanics of a Dysfunctional Motion Segment
Biomechanical evaluation of the FSU is achieved mainly through cadaveric specimen studies. Much of the body of knowledge regarding spinal biomechanics is based on in vitro assessment of specimens obtained from fresh-frozen cadavers. Specimens, stripped of musculature, are loaded to predetermined bending load levels to quantify the biomechanical response of the FSU. Although limited, the in vitro analysis of FSU motion can be highly controlled and detailed. Numerous researchers studying in vitro FSU biomechanics have shown that the response of the FSU to external loading is associated with two characteristic flexibility zones: the neutral zone (NZ) and the elastic zone (EZ). The NZ is a segment of the flexibility curve within which small loads can generate large displacements. The EZ is a segment within which lesser displacements result from greater load application—without causing mechanical injury to the spine. The sum of the two zones (neutral plus elastic zones) comprises the total range of motion (ROM) of the spine under physiologic loading conditions.
It has been suggested that the width of the NZ is the best indicator of spinal instability (due either to injury or degeneration).1–5 Panjabi et al. studied the influence of traumatic ligamentous injury on the stability of the thoracolumbar spine.6 They demonstrated that both ROM and the NZ increased after destabilizing trauma. However, the NZ was observed to be a more sensitive indicator of instability.
Mimura et al. studied multidirectional flexibility of FSUs with a variety of degeneration grades.7 They observed that the ROM decreased in the sagittal and lateral planes and increased in axial rotation. In addition, they noted an increase in the laxity at the joint, which was associated with the instability index (the ratio of the NZ to the ROM; i.e., the NZ ratio).
Tanaka et al. investigated the effect of degeneration on the flexibility of 114 FSUs obtained from 47 cadaveric lumbar spines.8 They categorized specimens in five degeneration grades based on radiographic (MRI) and cryomicrotome section analyses. All specimens were tested biomechanically for flexion, extension, lateral bending, and axial rotation. Rotations and translations were recorded. Both techniques seemed to be in an agreement regarding the advanced stages of degeneration, more so than for early stages. The investigators did not report any data regarding the NZ, but did demonstrate that the upper lumbar FSUs were associated with a significantly increased ROM (in rotations and translations) during sagittal bending and axial rotation as the degeneration progressed toward grade IV. ROM decreased at the grade V level. For the lower lumbar FSUs, ROM increased up to the grade III level of degeneration, followed by a decrease at grades IV and V. This observation was statistically significant only during axial rotation and lateral bending.