4 Crisis resource management in the PACU
Since World War II, the field of aviation has used flight simulators as a safe yet realistic training method for all types of pilots. Investigations of airline disasters have demonstrated that a pilot’s technical skills are not usually the cause of accidents.1 Instead, poor teamwork and inadequate communication were found to be commonly associated with these adverse incidents. In response to this discovery, airline crew team training was born in the 1980s to promote effective collaboration among cockpit and cabin crews, ground personnel, and air traffic controllers. Although the practice has never been validated empirically, simulation techniques have become the mainstay of aviation training. Pilots train extensively in all emergency procedures in simulated environments to become proficient in crisis management before encountering similar situations on actual flights.
Training in health care is now possible with the introduction of full-sized human patient simulators in the early 1990s. Gaba and colleagues, at Stanford University in Palo Alto, California, adapted the principles of CRM training to the medical domain.2 They found that the principles were as applicable to health care as they were to aviation. Both fields are characterized as dynamic, necessitate rapid decision making under stress, and require teams of individuals to work together effectively to prevent loss of life. Critical care medicine, emergency medicine, and trauma teams use simulation technology and CRM training. Although the initial emphasis was to educate physicians, the technique is now used to educate nurse anesthetists, nurse practitioners, critical care nurses, paramedics, and other allied health personnel. Simulation has also been incorporated into many curricula for health care providers and continues to expand its role in education and training to improve health care delivery.
Human factors training and the systems approach to reducing medical error
Human error is an inevitable part of complex and rapidly changing work domains, such as aviation, anesthesiology, and critical care medicine.3 Human error in any discipline can lead to catastrophic outcomes. Major incidents in any industry, such as the crash of the Concorde jet in 2000, gain media interest and prompt public attention and action primarily because of the drama and scope of the event in terms of lives altered or lost. Until recently, human error–related accidents in health care tended to be less visible to the public, primarily because these events usually affect one patient at a time.
Theorists in human factors have identified particular circumstances and error types that can help to train individuals to recognize the signs of errant problem solving. Although human error can never be eradicated, it can certainly be minimized.4 Aviation, for example, favors teaching error management techniques rather than an aiming for human perfection. Numerous organizations are dedicated to improving patient safety by funding research endeavors in this area. One such organization, the Anesthesia Patient Safety Foundation, has funded many studies examining human factors and training in the field of anesthesia. Moreover, the National Patient Safety Foundation has broadened the study of human factors to all medical specialties. Both groups believe that further study and advances in training can improve patient outcomes and safety.
Reason5 operationalized error into the following three terms: slips, lapses, and mistakes. A slip is defined as an error of execution. It is observable and can simply involve the human action of picking up the wrong syringe or turning the wrong knob on an oxygen flowmeter. A lapse is not observable, but involves the inability of a person to correctly recall information from memory, such as the mixture of a lidocaine drip. Finally, a mistake is defined as an error in planning rather than an error in execution. Here, a nurse may have planned to actively suction secretions from an endotracheal tube during extubation of a patient. Although the execution was technically correct, the lungs were left devoid of oxygen in the process, which was a mistake in planning.
A follow-up root cause investigation discovered that the pharmacy had recently stocked phenylephrine next to atropine in the medication drawer. Both the drugs were manufactured by the same company and came in the same sized vials with the same color snap-off caps. The label for atropine was a light red color, but the phenylephrine label was pink. Instead of placing the blame on Sarah, the suggestion was made that pharmacy immediately tag the vials with a black colored A atop the atropine and physically separate the two drugs from one another in the medication cart. The manufacturer was also notified and encouraged to change the labeling system.
Traditionally, an adverse outcome results in blaming the particular caregiver; however, careful study of the entire system in which the incident occurred usually uncovers multiple factors that contributed to the event.2 Lack of training, improper equipment maintenance, poor staffing, or an illegible order transcribed incorrectly can individually or jointly contribute to a critical event. In other words, a cascade of events rather than a single event, often results in an adverse outcome. CRM training advocates the systems approach to adverse outcome analysis. The systems approach seeks answers from a macro perspective to discover the contributing factors. A look at policies and administrative decisions that either supported or derailed a critical incident is a radical departure from the traditional “frame and blame” punitive approach used in medicine. This approach should not be interpreted as lessening the responsibility of the person who made an error, but as gaining a better understanding of why the error occurred; only then can the system be adjusted to better prevent reoccurrence. CRM training strives to make practitioners aware of systemic factors and to work effectively within the context of a large system that might not always support their efforts. The goal of CRM training is to learn from the mistakes of others through an open exchange of information to lessen the contributions of human factors to an adverse event. In this way, students can come to understand the cascade of events that lead to mistakes in a certain situation.
Crisis management principles
Many approaches, philosophies, and theories of crisis management exist for use in managing complex industries such as health care. One such approach is described by the acronym ERR WATCH, developed by Fletcher6 to help the practitioner recall the eight essential elements of crisis management (Box 4-1). ERR WATCH also serves as a reminder that the goal of crisis management is the reduction of the element of human error in any given situation. The human factors shaping performance are of prime importance. Limitations exist in a health care provider’s ability to quickly and accurately process rapidly changing information during a crisis. When these limitations are understood, many opportunities can be found to improve performance.