Care of the shock trauma patient

Published on 20/03/2015 by admin

Filed under Critical Care Medicine

Last modified 20/03/2015

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 0 (0 votes)

This article have been viewed 2052 times

54 Care of the shock trauma patient

Definitions

Compartment Syndrome:  A pathologic condition caused by the progressive development of arterial compression and consequent reduction of blood supply.

Damage Control Resuscitation:  A systematic approach to control bleeding at the point of injury by definitive treatment interventions of minimizing blood loss and maximizing tissue oxygenation.

Injury:  A state in which a patient experiences a change in physiologic or psychological systems.

Microvascular:  Pertaining to the portion of the circulatory system that is composed of the capillary network.

Motor Vehicle Crash (MVC):  Occurs when a vehicle collides with another vehicle or object and can result in injuries or death.

Pattern of Injury:  The circumstance in which an injury occurs, such as causation from sudden deceleration, wounding with a projectile, or crushing with a heavy object.

Permissive Hypotension:  A guided intervention that limits fluid resuscitation until hemorrhage is controlled.

Primary Assessment:  The first in order of importance in the evaluation or appraisal of a disease or condition.

Resuscitation:  Use of emergency measures in an effort to sustain life.

Secondary Assessment:  Evaluation of a disease or condition with previously compiled data.

Shock:  An abnormal condition of inadequate blood flow and nutrients to the body’s tissues, with life-threatening cellular dysfunction.

Shock Trauma:  A sudden disturbance that causes a wound or injury and results in acute circulatory failure.

Systemic Inflammatory Response Syndrome (SIRS):  Inflammatory disturbance that affects multiple organ systems of the body.

Trauma:  Tissue injury, such as a wound, burn, or fracture, or psychological injury in which personality damage can be traced to an unpleasant experience related to tissue injury, such as a wound, burn, amputation, or fracture.

Shock trauma care continues to change dramatically in response to innovative surgical technologies, advancements in anesthesia agents, and trauma research. Likewise, the medical advances continue to be driven by the state of the trauma science directly resulting from military medicine’s evolving combat casualty management from the wars in Iraq and Afghanistan. In peacetime, the civilian trauma centers take the lead in timely research and evidence-based medicine to establish new trauma protocols and to translate the trauma research to the practice at the bedside. However, in wartime, it is military medicine’s combat medical research and scientific data outcomes that guide the cutting edge benefiting civilian trauma centers.1 The history of advancements in shock trauma care is directly linked to wars and the military’s battlefield medicine.1 Trauma care continues to advance in the twenty-first century with the wars in Afghanistan and Iraq. Permissive hypotension and damage control hemorrhage bring new dimensions in treating severe hemorrhagic shock. Consequently, the treatment of shock is now focused on rapid transport and guided resuscitation within the “golden hour.”2 Advances in vascular surgery have led to better patient outcomes. Today, the battlefields in Iraq and Afghanistan have continued to advance shock trauma nursing care that directly correlates with enhance trauma patient outcomes.

This chapter will focus on the epidemiology of traumatic injuries, mechanism of injury (MOI), pattern of injury, anatomy, physiology, and the patient’s presenting symptoms that guide the postanesthesia nurse in the delivery of care for the adult, pediatric, and obstetric patient.

The postanesthesia nurse’s focus includes primary and secondary assessments for systematic prioritization of nursing interventions and outcomes of care. The mechanism of injury is vital to understanding the pathogenesis of injury and anticipated complications, including shock during the patient’s recovery from anesthesia and surgery. The emphasis of the trauma patient’s postanesthesia care is on ensuring vital life functions, promoting safety, and supporting the psychosocial and spiritual needs. Preparedness for emergence delirium from posttraumatic stress disorder (PTSD) assists the nurse in understanding and effectively managing emergence from anesthesia. Finally, the use of evidence-based practice brings the best available science to the practice arena and advances trauma care.

Epidemiology of trauma

In the United States, trauma injuries continue to be the fourth leading cause of death, affecting the lives of more than 70 million people each year.37 Furthermore, trauma accounts for more deaths in the United States during the first four decades of life than any other disease. Surprisingly, fatality rates for older adults are now higher than rates for younger adults.5,6 Mortality from trauma is the tip of the iceberg, a small indication of a much bigger problem; many patients survive trauma, need surgical intervention, and require lengthy rehabilitation.

Although 50% of all deaths attributed to trauma occur within minutes to hours after the injury, 30% of patients die within 2 days of neurologic injury; the remaining 20% of deaths occur as a result of complications.3 Overwhelming infection and sepsis result from these traumatic injuries, and trauma patients are at risk for multiple complications, including respiratory, circulatory, neurologic, and renal failure. Numerous pathologic conditions and inflammatory derangements can contribute to this high incidence rate of late mortality from sepsis. Trauma patients who need surgery and anesthesia have greater vulnerability to life-threatening conditions and mandate vigilant, astute postanesthesia nursing care.

Prehospital phase

During the prehospital phase, vital information regarding the trauma patient’s condition at the scene and MOI reveals important clues in the clinical finding of how the patient presents in the resuscitation area or later in the postanesthesia care unit (PACU). If the patient had a prolonged extrication period at the scene, the airway may have been compromised; the patient may have active or uncontrolled bleeding; or the patient may have been exposed to environmental elements (e.g., decreasing core temperature).

Other conditions at the scene that can influence the trauma patient’s outcome include such considerations as: (1) whether restraint devices were used; (2) whether airbags were deployed during impact; (3) whether the passenger was ejected from the car; (4) in what position the patient was found; (5) whether the car rolled over; (6) whether the windshield was broken; (7) the speed at which the vehicle was traveling; (8) where the impact was on the car; (9) whether the patient sustained an impaled object; (10) whether the patient wore a motorcycle helmet; (11) whether other fatalities occurred at the scene; and (12) what, if anything, bystanders did to assist the victim. All these observations by the first providers help to piece each part of the trauma puzzle together to ensure a comprehensive approach to the management of the trauma patient.

Mechanism of injury

The pattern or MOI simply refers to the manner in which the trauma patient was injured.8 For accurate assessment of the trauma patient in the PACU, the nurse needs a basic understanding of the different types of MOI. Patterns of injury are related to the categories of the injuring force and the subsequent tissue response. A thorough understanding of these aspects of injury helps in determining the extent and nature of the potential injuries. Damage occurs when the force deforms tissues beyond failure limits.8 Injuries result from different kinds of energy (kinetic forces, such as motor vehicle crashes [MVCs], falls, or bullets) or acute exposure (thermal, chemical, electrical, radiation, or high-yield explosives) to the tissues and underlying structures. Some of the major factors that influence the severity of the injury are the velocity of the objects and the force in terms of physical motion to moving or stationary bodies. The force is the mass of an object multiplied by the acceleration. Numerous studies conclude that the MOI helps identify common injury combinations, predict eventual outcomes, and explain the type of injury sustained.8 Although a certain pattern of injury may be predictable for specific injuries, trauma patients may sustain other injuries. A thorough assessment for identification of all actual and potential injuries is needed.8,9

Various forms of traumatic injuries are: blunt force (high-velocity); penetrating, such as those that cut or pierce; falls from great heights; firearms; and chemical, electric, radiant, and thermal burns. MVCs create impressive forces that can fracture extremities, crush organs, and lead to massive blood loss and soft tissue damage. At the time of a crash, three impacts occur: (1) vehicle to object; (2) body to vehicle; and (3) organs within body. Forces are exerted in relation to acceleration, deceleration, shearing, and compression.8,9 Acceleration-deceleration injuries occur when the head is thrown rapidly forward or backward, resulting in sudden alterations. The semisolid brain tissue moves slower than the solid skull and collides with the skull, causing injury. The injury where the brain makes contact with the skull is called a coup. The brain injury can also occur as the brain tissue is thrown in the opposite direction, causing damage in the contralateral skull surface, which is known as contrecoup injury. Ever-changing MOIs also create the need for new nursing educational programs and competencies for postanesthesia nurses to stay up to date and to advance practice.

Blunt trauma

Blunt trauma is one of the major types of trauma injuries that is best described as a wounding force that does not communicate to the outside of the body. Blunt forces produce crushing, shearing, or tearing of the tissues, both internally and externally.810 High-velocity MVCs and falls from great heights cause blunt-trauma injuries that are associated with direct impact, deceleration, continuous pressure, and shearing and rotary forces.810 These blunt-trauma injuries are usually more serious and life threatening than other types of trauma because the extent of the injuries is less obvious and diagnosis is more difficult. Because blunt-trauma injuries can leave little outward evidence of the extent of internal damage, the nurse must be extremely vigilant and astute in making observations and ongoing assessments.

When the body decelerates, the organs continue to move forward at the original speed. As the body’s organs move in the forward direction, they are torn from their attachments by rotary and shearing forces.810 Furthermore, blunt forces disrupt blood vessels and nerves. This MOI to the microcirculation causes widespread epithelial and endothelial damage and thus stimulates cells to release their constituents and further activates the complement, the arachidonic acid, and the coagulation cascade that activated the systemic inflammatory response syndrome. This unique inflammatory response is covered later in this chapter. Finally, blunt trauma may mask more serious complications related to the pathophysiology of the injury.

Contusion of tissues

When blunt trauma is significant enough to produce capillary injury and destruction, contusion of tissues occurs. Consequently, the extravasation of blood causes discoloration, pain, and swelling.810 If a large vessel ruptures, a hematoma may produce a distinct palpable lesion. With a massive contusion or hematoma, an increase in myofascial pressures often results in sequelae known as compartment syndrome.9,10 A compartment is a section of muscle enclosed in a confined supportive membrane called fascia; compartment syndrome is a condition in which increased pressure inside an osteofascial compartment impedes circulation and impairs capillary blood flow and cellular ischemia, resulting in an alteration in neurovascular function.9,10 This syndrome occurs more frequently in the lower leg or forearm but can occur in any fascial compartment. Damaged vessels in the ischemic muscle dilate in response to histamine and other vasoactive chemical substances, such as the arachidonic cascade and oxygen-free radicals. This dilation, with resultant leakage of fluid from capillary membrane permeability, results in increased edema and tissue pressure.9 The increased edema and pressure compress capillaries distal to the injury, impeding microvascular perfusion. These pathologic changes cause a repetitive cycle within the confined tissues, which increases swelling and leads to increased compartment pressures. Fascial compartment syndrome can be measured if indicated. Normal pressure is more than 10 mm Hg, but a reading of more than 35 mm Hg suggests possible anoxia.11,12 A fasciotomy may be indicated to prevent muscle or neurovascular damage.

Stabilization phase

The initial assessment, resuscitation, and stabilization processes that are initiated in the emergency department and trauma center extend into the operating room (OR), the PACU, and the critical care unit. Temperature of the trauma rooms may be increased to prevent hypothermia during resuscitation. Because the most common cause of shock (Table 54-1) in the trauma patient is hypovolemia from acute blood loss, the ultimate goal in fluid resuscitation is prompt restoration of circulatory blood volume through replacement of fluids so that tissue perfusion and delivery of oxygen and nutrients to the tissues should be maintained.1013 Rapid identification and ensuing implementation of correct aggressive treatment are vital for the trauma patient’s survival. Although hypovolemia is the most common form of shock in the trauma patient, cardiogenic shock, obstructive shock (tension pneumothorax, cardiac tamponade), and distributive shock (neurogenic shock, burn shock, anaphylactic shock, and septic shock) can occur. Rapid-volume infusers deliver warmed intravenous fluids at a rate of 950 mL/min with large-bore intravenous catheters.10 Many trauma centers initially infuse 2 to 3 L of lactated Ringer or normal saline solutions and then consider blood products. The fluids should be warmed to prevent or minimize hypothermia. Crystalloids, colloids, or blood products can be used for effective reversal of hypovolemia.

Crystalloids are electrolyte solutions that diffuse through the capillary endothelium and can be distributed evenly throughout the extracellular compartment. Examples of crystalloid solutions are lactated Ringer solution, Plasma-Lyte, and normal saline solution. Although controversy exists regarding crystalloid versus colloid fluid resuscitation in multiple trauma, the American College of Surgeons Committee on Trauma recommends that isotonic crystalloid solutions of lactated Ringer or normal saline solution be used for that purpose.11 Furthermore, crystalloids are much cheaper than colloids. Administration of crystalloids should be threefold to fourfold the blood loss.11

Colloid solutions contain protein or starch molecules or aggregates of molecules that remain uniformly distributed in fluid and fail to form a true solution.1316 When colloid solutions are administered, the molecules remain in the intravascular space, thereby increasing the osmotic pressure gradient within the vascular compartment. Volume for volume, the half-life of colloids is much longer than that of crystalloids. Colloid solutions commonly used are plasma protein fraction, dextran, normal human serum albumin, and hetastarch.

Researchers in several new randomized control trials have used hypertonic solutions to resuscitate patients in shock.1418 According to Beekley,18 hypertonic saline solution (3% sodium chloride) can be used in resuscitation of the child with a severe head injury because it maintains blood pressure and cerebral oxygen delivery, decreases overall fluid requirements, and results in improved overall survival rates.16 In addition, patients with low Glasgow Coma Scale (GCS) scores from head injuries have improved survival rates in the hospital.16

Although crystalloid and colloid solutions serve as primary resuscitation fluids for volume depletion, blood transfusions are necessary to restore the capacity of the blood to carry adequate amounts of oxygen. Furthermore, blood component therapy is considered after the trauma patient’s response to the initial resuscitative fluids has been evaluated.11 In an emergency, universal donor blood (type O negative for women in childbearing years) packed red blood cells can be administered for patients with exsanguinating hemorrhage. Untyped O negative whole blood can also be given to patients with an exsanguinating hemorrhage. Other blood products, such as platelets and fresh frozen plasma, may need to be given to the trauma patient because of a consumption coagulopathy. Most notable are the leukemic trauma patients with low platelet counts. With fluid resuscitation of these patients with immunosuppression, colloids are contraindicated because of the antiplatelet activity that exacerbates hemorrhaging.17 Type-specific blood often times is available within 10 minutes and is preferred over universal donor blood. Fully cross-matched blood is preferred in situations that can warrant awaiting type and cross match, which often takes up to 1 hour.1012 Finally, the therapeutic goal of all blood component therapy is to restore the circulating blood volume and to give back other needed blood with red blood cells and clotting factors to correct coagulation deficiencies.1922

New evidence recognizes “permissive hypotension” by keeping the patient’s systolic blood pressure at approximately 90 mm Hg correlates with better outcomes owing to conservation of important clotting factors.21 In addition, there also seems to be a protective mechanism of myocardial suppressive factors that conserve homeostasis of fluid shifts. The intent of this protective response is to prevent further hemorrhaging or bleeding out of the red blood cells and clotting factors. By sustaining the hypotension, the blood pressure supports basic perfusion until the patient is in the OR and surgically resuscitated.19,21 Damage control resuscitation and warm, fresh whole blood are now associated with better survival rates in combat-related massive hemorrhage injuries. Restoration of blood volume before homeostasis is achieved may have adverse complications of exacerbation of blood loss from increase in blood pressure.1822

In summary, fluid resuscitation of the trauma patient is essential to ensure that adequate circulating volume and vital oxygen and nutrients are delivered to the tissues. However, new studies recommend permissive hypotension with the use of damage control resuscitation to decrease mortality and morbidity and optimize the patient’s survival.1822 These combat-related studies are now influencing the management of civilian resuscitation of massive hemorrhage injuries in trauma centers throughout the United States.

Postanesthesia phase I

Before the shock trauma patient is admitted to the PACU, the postanesthesia nurse begins preparing for the PACU admission. When the OR nurse calls the PACU to notify the admitting nurse that the trauma surgeon is beginning to close the patient’s surgical site, important prehospital and intraoperative information is communicated. The transfer of care, or hand-off, communication from the OR nurse to PACU nurse consists of a detailed yet succinct report of all pertinent findings, such as surgical operation, type of anesthesia including opioids, vital signs, oxygen saturation, ventilation settings, hemodynamic monitoring, drains, vasoactive drugs, intravenous sites with type of solutions, and other pertinent findings so that the PACU nurse can begin to prepare for the patient’s needs.

Primary assessment

The nursing assessment of the shock trauma patient in the PACU begins with evaluation of the ABCDs (airway, breathing, circulation, and disability). Foremost in this vital primary survey is the patency of the airway. This assessment begins with proper positioning of the patient’s head, with cervical spine protection always maintained if injury is suspected. Cervical collars should not be removed unless specifically directed by the trauma or neurosurgeon after confirmation of the absence of spinal cord injury. The patient may need to have the airway cleared with suctioning and removal of secretions or blood. In addition, airway adjuncts may be needed, such as oropharyngeal and nasopharyngeal airways. If the patient is intubated via endotracheal tube or nasotracheal tube, ventilatory support should be provided with the proper settings to achieve optimal oxygenation and ventilation.

Next, the postanesthesia nurse evaluates the patient’s work of breathing. While recalling the MOI, such as blunt or penetrating trauma to the chest, the nurse should be highly suspicious of pulmonary contusions, fractured ribs, or injuries from shearing forces. The nurse assesses spontaneous respirations, respiratory excursion, chest wall integrity, symmetry, depth, respiratory rate, use of accessory muscles, and the work of breathing. With palpation, the nurse should evaluate for the presence of subcutaneous emphysema, hyperresonance or dullness over the lung fields, and tracheal deviation. With auscultation, the nurse assesses the lungs for bilateral breath sounds and evaluates for adventitious breath sounds. In addition, pulse oximetry and end-tidal CO2 monitoring augment the complete respiratory assessment of the trauma patient.

After a thorough evaluation of the airway and breathing, the nurse begins the circulatory assessment. With the use of palpation, the nurse evaluates the circulation, checks the quality, location, and rate of the pulses, and compares the right with the left and the upper extremities with the lower. If the nurse can palpate a radial pulse, the arterial pressure is at least 80 mm Hg. If no radial pulse is palpable, the nurse then palpates the femoral pulse (a situation that indicates a pressure of 70 mm Hg). If only a carotid pulse is palpable, the arterial pressure is approximately 60 mm Hg. The patient’s blood pressure and pulse (rate and rhythm) should be monitored via the cardiac monitor. Any changes in the patient’s appearance should be investigated and prompt the nurse to reassess the patient. Pulseless electric activity may show as electric impulses on the cardiac monitor without the presence of a palpable pulse. Pulseless electric activity may be seen in the trauma patient related to a variety of causes, such as pneumothorax, cardiac tamponade, hypovolemia, or hypothermia.

Simultaneously during the palpation of pulses, the nurse assesses the patient’s skin temperature, color, and capillary refill. Capillary refill is a good indicator of tissue perfusion, especially in children. Another aspect of circulatory assessment is observation of the patient for any significant or uncontrollable bleeding from the operative site. The nurse should inspect the peripheral, central, and arterial lines to ensure the patency of the lines and integrity of the sites. Each line should be identified and labeled with the date and time to distinguish the type of parenteral fluid and medication administration in use.

The final component of the primary survey is the disability or neurologic examination. The patient’s mental status should be assessed with the AVPU (Alert, Voice, Pain, Unresponsive) scale or the GCS. The AVPU is described as follows: A for awake and responding to nurse’s questions; V for verbal response to nurse’s questions, P for responding to pain; and U for unresponsive.10,11 The GCS is used in many PACUs for evaluating neurologic status and predicting outcomes of severe trauma. This neurologic scoring system allows for constant evaluation from field to emergency room to PACU. One must remember that anesthesia blunts the neurologic response; therefore the response is not as useful in the immediate postanesthesia period. Next, bilateral pupil response is evaluated for equality, roundness, and reactivity: brisk, slow, sluggish, or no response to light and accommodation. Before the primary assessment is complete, the PACU nurse quickly reassesses the ABCDs for stability and then is ready to receive a report from the anesthesiologist.

Anesthesia report

The anesthesia provider’s report provides valuable information concerning the trauma patient’s presenting status to the perianesthesia nurse. This report includes significant facts that pertain to the MOI, prehospital phase, admitting and stabilization period, operative report, intubation, anesthetic agents, estimated blood loss, fluid resuscitation, cardiopulmonary status, and treatment abnormalities.

In the review of the anesthesia report, the nurse should note any difficulty in intubation of the patient. The nurse should take note if the oral secretions are tinged pink or bloody, which can indicate an infectious process, pulmonary edema, trauma, or uncontrolled hemorrhage.

Another important aspect of the anesthesia report is estimated blood loss and fluid replacement, which are carefully monitored through the hemodynamic status of the trauma patient. With the use of arterial lines and pulmonary artery catheters, the anesthesiologist can closely monitor the patient’s hemodynamic status. In severe chest injuries, closed chest drainage units and auto transfusions or Cell Saver blood recovery systems can be used to conserve the vital life-sustaining resource blood. Because the goal of treatment is to keep the patient in a hyperdynamic state, the intraoperative trending should reveal that the patient is volume supported, because the body responds hypermetabolically to trauma and achieving that state ensures the delivery of oxygen and other nutrients to essential tissues in the body. End-organ perfusion is monitored and measured with the urinary output and hemodynamic monitoring. Urinary catheters are essential in management of fluids in the trauma patient and assessment of kidney function. Hemodynamic monitoring reflects the body’s hydration status and reveals the work of the heart. A detailed operative report reveals the surgical insult to the patient. It also presents a comprehensive review of all anesthetic agents that reflects a rapid sequence of induction, balanced analgesia, and heavy use of opioids, including the time these agents were given and the amount and type of muscle relaxants and reversal agents used. The anesthesia report should reveal any untoward events that occurred during surgery, such as hypothermic or hypotensive events and significant dysrhythmias, including ischemic changes.

Secondary assessment

After the anesthesia report is received, a brief initial primary survey is completed, and the postanesthesia nurse begins the secondary comprehensive survey with a high degree of suspicion concerning the trauma patient’s MOI for specific perianesthesia problems. The initial surgery often is directed at repair of the major life-threatening injuries, such as a ruptured aorta. Consequently, additional injuries may manifest themselves during this later time in the PACU, after swelling or bruising are allowed to develop. During the comprehensive secondary survey, head-to-toe assessment is performed as the trauma patient is emerging from anesthesia. The perianesthesia nurse may discover other injuries, such as pulmonary, cardiac, or renal contusions and compartment syndrome of different extremities.

The head-to-toe assessment begins with a neurologic assessment, including the patient’s level of consciousness; the appropriateness of verbal response; pupillary reactivity, size, and shape; equality of pupillary response to light and accommodation; movement; sensation; and pain response in the extremities. Each aspect is carefully evaluated and documented. Next, the head and face are inspected for abrasions, lacerations, puncture wounds, ecchymosis, and edema. These structures are palpated for subcutaneous emphysema or tenderness. The eyes are assessed for gross vision by asking the patient to identify the number of fingers the nurse is holding up. Furthermore, the eyes are evaluated for ecchymosis, “raccoon eyes,” and possible conjunctival hemorrhage. Extraocular movements are also evaluated by asking the patient to follow the nurse’s finger in six directions. The presence of maxillofacial injuries can be of great concern because of the potential to compromise the patient’s airway.

The ears are inspected for Battle sign (ecchymosis behind the ears). The nose is examined for drainage of blood or clear fluid. Clear fluid draining from the nose or ears should be checked for the presence of cerebrospinal fluid (CSF). A draining nose or ears should never be packed. If CSF is suspected or Battle sign is seen, a nasogastric tube should never be inserted through the patient’s nose. An orogastric tube is the placement of choice. Finally, the nurse should immediately report a positive CSF finding to the trauma surgeons.

The neck should be evaluated for edema, ecchymosis, tracheal deviation, pulsating or distended neck veins, and subcutaneous emphysema. As the perianesthesia nurse continues the assessment of the chest, the anterior and the lateral thorax and axilla are inspected for lacerations, abrasions, contusions, puncture wounds, ecchymosis, and edema. The nurse carefully palpates the chest for tenderness and subcutaneous emphysema. The chest wall is observed for symmetry, depth, and equality of expansion and excursion. If the trauma patient has a flail chest from the injury sustained, astute monitoring for effective oxygenation and ventilation are essential. Breathing is observed for rate, degree of effort, use of accessory muscles, or paradoxic chest wall movements. Breath and heart sounds are auscultated, noting adventitious lung sounds (e.g., wheezing, rales, friction rubs) or murmurs, bruits, and muffled heart sounds. The perianesthesia nurse carefully notes facial expressions or body reactions that may suggest possible cardiac contusions or rib fractures. The operative site and all dressings and drains should be assessed and described. Furthermore, all drains should be labeled, drainage of fluid is measured, and color and consistency are described. Precise documentation of all fluid output is essential for accurate fluid replacement.

The next areas to be inspected are the abdomen, pelvis, and genitalia. All abrasions, contusions, edema, and ecchymoses are noted. The abdomen is auscultated for bowel sounds before palpation for tenderness and rigidity. The nasogastric tube, jejunostomy, or tube drainage is examined for color, consistency, and amount of fluid. In suspected internal abdominal or retroperitoneal hemorrhage, abdominal compartment measurements should be assessed. Some common causes of abdominal compartment syndrome are pelvic fractures, hemorrhagic pancreatitis, ruptured abdominal aortic aneurysm, blunt and penetrating abdominal trauma, bowel edema from injury, septic shock, and perihepatic or retroperitoneal packing for diffuse nonsurgical bleeding. If intraabdominal hypertension or abdominal compartment syndrome are suspected or considered, the standard of care is measurement of bladder pressures.24 A catheter or similar device is connected to a pressure transducer that is connected to the urinary catheter. The urinary catheter is clamped near the connection, 50 mL of saline solution is instilled to the bladder, the transducer is leveled at the symphysis pubis, and the pressure is measured at end expiration. If the pressure is elevated, a decompression laparotomy should be performed to release the pressure that develops from bowel edema.24 The abdomen is then left open and covered with a sterile wound vacuum until the swelling has resolved and the abdomen can be closed.

The pelvis is palpated for stability and tenderness, especially over the crests and the pubis. Priapism, which is persistent abnormal erection, may be noted.10,11 In addition, preexisting genital herpes may also be present. The urinary catheter is inspected for color and amount of drainage. Urinary output should be at least 0.5 to 1.0 mL/kg/h in adults and 1 to 2 mL/kg/h in children.8 Hematuria can indicate kidney or bladder trauma. Furthermore, urinary output must be vigilantly monitored to ensure a minimum of 30 mL/h in adults so that the patient does not develop acute renal failure from rhabdomyolysis, which can occur after traumatic injuries. The vagina and rectum are checked carefully for neurologic function and bloody drainage.

Buy Membership for Critical Care Medicine Category to continue reading. Learn more here