Chapter 89 Acute Abdomen
Anatomic and Physiologic Considerations
The Peritoneum
The peritoneum provides a protective environment for the intra-abdominal organs, and, because of its marked sensitivity, a valuable “window” for the examining health care provider. It is composed of a single layer of mesothelial cells lining the abdominal cavity along the abdominal wall (the parietal peritoneum) and the intra-abdominal viscera (the visceral peritoneum). The space between these is the peritoneal cavity. Beneath the mesothelium is a submesothelial layer of extracellular matrix, capillaries, and lymphatics.1 The peritoneum’s sensitivity to inflammation, ischemia, and necrosis is mediated by the fluid in the peritoneum that contains macrophages and other leukocytes.2 Thus, with a focus of inflammation anywhere in the peritoneal cavity, inflammatory mediators are released by these leukocytes, often resulting initially in poorly localized, generalized pain. With irritation of the peritoneum associated with early appendicitis, for example, the patient interprets the inflammation as periumbilical pain. This is related to the embryologic development along dermatomes. As more inflammatory cytokines are secreted throughout the peritoneal cavity, the pain becomes more generalized and will eventually result in spasm of the overlying muscles of the abdominal wall, interpreted by the examiner as guarding.
Visceral Blood Flow
The regulation of visceral blood flow is a tightly controlled balance of neural, humoral, paracrine, and metabolic factors.3 In the gut, enteral feeding increases the blood flow and the metabolic demands on the intestinal mucosa. Some of these effects are directly related to the nutrients in the intestinal lumen, whereas others are dependent on the enteric nervous system and the associated refexes, on gastrointestinal hormones, and on gastrointestinal vasoactive mediators such as adenosine, endothelin-1, and nitric oxide.4 In pathologic states such as sepsis alone or shock, whether from sepsis, hemorrhage, or cardiac failure, visceral blood flow is reduced, which can lead to ischemia of the intestinal mucosa and submuscosa. Even with restoration of blood pressure and cardiac output after treatment of shock, microvascular perfusion of the intestine may remain impaired resulting in mucosal ischemia and persistent lactate production.
Such ischemia can lead to altered integrity of the mucosal barriers to bacteria and other pathogens, thus increasing the entry of endotoxins into the splanchnic venous and lymphatic systems. These pathogens can fuel the inflammatory response. This finding has fostered the theory of “the gut as a central organ of sepsis or multisystem organ failure.”5 Whether the translocation of bacteria or endotoxin from gut lumen to splanchnic drainage is the chicken or egg can be debated; regardless, this perturbation of intestinal blood flow contributes to the pathophysiology of shock and sepsis.
Other conditions in the ICU can affect splanchnic blood flow, especially mechanical ventilation with high inspiratory pressures, high positive end-expiratory pressure, or high tidal volumes.6,7
Laboratory Tests
Amylase is a valuable diagnostic test for children with abdominal pain or unexplained intra-abdominal sepsis as hyperamylasemia can indicate pancreatitis. Elevated amylase is not specific to pancreatic insults and can be elevated with head trauma, decreased renal clearance, and intestinal obstruction. Serum lipase can be an additive test to the assessment of the pancreas. It tends to be more specific to the pancreas, but can be mildly elevated in intestinal obstruction as well. When both amylase and lipase are markedly elevated, pancreatitis is most likely. Children with a history of severe or chronic pancreatitis might not have marked elevations, so the level of the enzyme does not always correlate with the severity of the disease.