23 Thrombosis
Venous thromboembolism (VTE)
Venous thromboembolism
Aetiology
Sluggishness of blood flow may be related to bed rest, surgery or reduced cardiac output, for example in heart failure. Factors increasing the risk of hypercoagulability include surgery, pregnancy, oestrogen administration, malignancy, myocardial infarction and several acquired or inherited disorders of coagulation (for further detail of genetic factors, see Rosendaal and Reitsma, 2009).
Other risk factors
There are several other patient-related risk factors for VTE. Age over 60 years is an important factor. Critical care admission, dehydration, and one or more significant medical comorbidities such as heart disease, metabolic, endocrine or respiratory pathologies, acute infectious diseases and inflammatory conditions are all important risk factors for VTE. A full list can be found in the relevant National Institute for Health and Clinical Excellence (2010) guideline.
Investigations
Treatment
Prophylaxis
Prevention of initial episodes of VTE in those at risk is clearly of great importance. It was estimated that around 25,000 people in the UK die from preventable hospital-acquired VTE annually, including patients admitted to hospital for medical care as well as surgery. There is also widespread evidence of inconsistent use of prophylactic measures for VTE in hospital patients, including mechanical as well as pharmacological means of VTE prophylaxis. Some of the medicines described below contribute to those pharmacological measures. Guidelines on this are available (National Institute for Health and Clinical Excellence, 2010).
Heparins
The major adverse effect of all heparins is haemorrhage, which is commoner in patients with severe heart or liver disease, renal disease, general debility and in women aged over 60 years. The risk of haemorrhage is increased in those with prolonged clotting times and in those given heparin by intermittent intravenous bolus rather than by continuous intravenous administration. UFH is monitored by derivatives of the activated partial thromboplastin time (APTT), for example the kaolin–cephalin clotting time (KCCT); in those patients with a KCCT three times greater than control, there is an eightfold increase in the risk of haemorrhage. The therapeutic range for the KCCT during UFH therapy, therefore, appears to be between 1.5 and 2.5 times the control values. Rapid reversal of the effect of heparin can be achieved using protamine sulphate, but this is rarely necessary because of the short duration of action of heparin. LMWHs may produce fewer haemorrhagic complications, and monitoring of effect is not routinely required. At doses normally used for treatment, they do not significantly affect coagulation tests and routine monitoring is not necessary (British Committee for Standards in Haematology, 2006a).
Heparins, particularly UFH, may also cause thrombocytopenia (low platelet count). This may occur in two forms. The first occurs 3–5 days after treatment and does not normally result in complications. The second type of thrombocytopenia occurs after about 6 days of treatment and often results in much more profound decreases in platelet count and an increased risk of thromboembolism. LMWHs are thought to be less likely to cause thrombocytopenia but this complication has been reported, including in individuals who had previously developed thrombocytopenia after UFH. For these reasons, patients should have a platelet count on the day of starting UFH and the alternate-day platelet counts should be performed from days 4 to 14 thereafter. For patients on LMWH, the platelet counts should be performed at 2–4 day intervals from day 4 to 14 (British Committee for Standards in Haematology, 2006b). If the platelet count falls by 50% and/or the patient develops new thrombosis or skin allergy during this period, heparin-induced thrombocytopenia (HIT) should be considered, and if strongly suspected or confirmed, heparin should be stopped and an alternative agent such as a heparinoid or hirudin commenced.
It has been shown that there is a non-linear relationship between the dose of UFH infused and the KCCT. This means that disproportionate adjustments in dose are required depending on the KCCT if under- or over-dosing is to be avoided (Box 23.1). Since the half-life of UFH is 1 h, it would take 5 h (five half-lives of the drug) to reach a steady state. A loading dose is, therefore, administered to reduce the time to achieve adequate anticoagulation. UFH in full dose can also be given by repeated subcutaneous injection, and in these circumstances the calcium salt appears to be less painful than the sodium salt. Opinions differ as to whether the subcutaneous or intravenous route is preferable. The subcutaneous route may take longer to reach effective plasma heparin concentrations but avoids the need for infusion devices.