Thorax

Published on 17/03/2015 by admin

Filed under Basic Science

Last modified 22/04/2025

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 5 (4 votes)

This article have been viewed 18374 times

Thorax

Conceptual overview

General description

The thorax is an irregularly shaped cylinder with a narrow opening (superior thoracic aperture) superiorly and a relatively large opening (inferior thoracic aperture) inferiorly (Fig. 3.1). The superior thoracic aperture is open, allowing continuity with the neck; the inferior thoracic aperture is closed by the diaphragm.

The musculoskeletal wall of the thorax is flexible and consists of segmentally arranged vertebrae, ribs, and muscles and the sternum.

The thoracic cavity enclosed by the thoracic wall and the diaphragm is subdivided into three major compartments:

The mediastinum is a thick, flexible soft tissue partition oriented longitudinally in a median sagittal position. It contains the heart, esophagus, trachea, major nerves, and major systemic blood vessels.

The pleural cavities are completely separated from each other by the mediastinum. Therefore, abnormal events in one pleural cavity do not necessarily affect the other cavity. This also means that the mediastinum can be entered surgically without opening the pleural cavities.

Another important feature of the pleural cavities is that they extend above the level of rib I. The apex of each lung actually extends into the root of the neck. As a consequence, abnormal events in the root of the neck can involve the adjacent pleura and lung, and events in the adjacent pleura and lung can involve the root of the neck.

Functions

Breathing

One of the most important functions of the thorax is breathing. The thorax not only contains the lungs but also provides the machinery necessary—the diaphragm, thoracic wall, and ribs—for effectively moving air into and out of the lungs.

Up and down movements of the diaphragm and changes in the lateral and anterior dimensions of the thoracic wall, caused by movements of the ribs, alter the volume of the thoracic cavity and are key elements in breathing.

Component parts

Thoracic wall

The thoracic wall consists of skeletal elements and muscles (Fig. 3.1):

The manubrium of sternum, angled posteriorly on the body of sternum at the manubriosternal joint, forms the sternal angle, which is a major surface landmark used by clinicians in performing physical examinations of the thorax.

The anterior (distal) end of each rib is composed of costal cartilage, which contributes to the mobility and elasticity of the wall.

All ribs articulate with thoracic vertebrae posteriorly. Most ribs (from rib II to IX) have three articulations with the vertebral column. The head of each rib articulates with the body of its own vertebra and with the body of the vertebra above (Fig. 3.2). As these ribs curve posteriorly, each also articulates with the transverse process of its vertebra.

Anteriorly, the costal cartilages of ribs I to VII articulate with the sternum.

The costal cartilages of ribs VIII to X articulate with the inferior margins of the costal cartilages above them. Ribs XI and XII are called floating ribs because they do not articulate with other ribs, costal cartilages, or the sternum. Their costal cartilages are small, only covering their tips.

The skeletal framework of the thoracic wall provides extensive attachment sites for muscles of the neck, abdomen, back, and upper limbs.

A number of these muscles attach to ribs and function as accessory respiratory muscles; some of them also stabilize the position of the first and last ribs.

Superior thoracic aperture

Completely surrounded by skeletal elements, the superior thoracic aperture consists of the body of vertebra TI posteriorly, the medial margin of rib I on each side, and the manubrium anteriorly.

The superior margin of the manubrium is in approximately the same horizontal plane as the intervertebral disc between vertebrae TII and TIII.

The first ribs slope inferiorly from their posterior articulation with vertebra TI to their anterior attachment to the manubrium. Consequently, the plane of the superior thoracic aperture is at an oblique angle, facing somewhat anteriorly.

At the superior thoracic aperture, the superior aspects of the pleural cavities, which surround the lungs, lie on either side of the entrance to the mediastinum (Fig. 3.3).

Structures that pass between the upper limb and thorax pass over rib I and the superior part of the pleural cavity as they enter and leave the mediastinum. Structures that pass between the neck and head and the thorax pass more vertically through the superior thoracic aperture.

Inferior thoracic aperture

The inferior thoracic aperture is large and expandable. Bone, cartilage, and ligaments form its margin (Fig. 3.4A).

The inferior thoracic aperture is closed by the diaphragm, and structures passing between the abdomen and thorax pierce or pass posteriorly to the diaphragm.

Skeletal elements of the inferior thoracic aperture are:

The joint between the costal margin and sternum lies roughly in the same horizontal plane as the intervertebral disc between vertebrae TIX and TX. In other words, the posterior margin of the inferior thoracic aperture is inferior to the anterior margin.

When viewed anteriorly, the inferior thoracic aperture is tilted superiorly.

Pleural cavities

The two pleural cavities are situated on either side of the mediastinum (Fig. 3.6).

Each pleural cavity is completely lined by a mesothelial membrane called the pleura.

During development, the lungs grow out of the mediastinum, becoming surrounded by the pleural cavities. As a result, the outer surface of each organ is covered by pleura.

Each lung remains attached to the mediastinum by a root formed by the airway, pulmonary blood vessels, lymphatic tissues, and nerves.

The pleura lining the walls of the cavity is the parietal pleura, whereas that reflected from the mediastinum at the roots and onto the surfaces of the lungs is the visceral pleura. Only a potential space normally exists between the visceral pleura covering lung and the parietal pleura lining the wall of the thoracic cavity.

The lung does not completely fill the potential space of the pleural cavity, resulting in recesses, which do not contain lung and are important for accommodating changes in lung volume during breathing. The costodiaphragmatic recess, which is the largest and clinically most important recess, lies inferiorly between the thoracic wall and diaphragm.

Relationship to other regions

Neck

The superior thoracic aperture opens directly into the root of the neck (Fig. 3.7).

The superior aspect of each pleural cavity extends approximately 2–3 cm above rib I and the costal cartilage into the neck. Between these pleural extensions, major visceral structures pass between the neck and superior mediastinum. In the midline, the trachea lies immediately anterior to the esophagus. Major blood vessels and nerves pass in and out of the thorax at the superior thoracic aperture anteriorly and laterally to these structures.

Upper limb

An axillary inlet, or gateway to the upper limb, lies on each side of the superior thoracic aperture. These two axillary inlets and the superior thoracic aperture communicate superiorly with the root of the neck (Fig. 3.7).

Each axillary inlet is formed by:

The apex of each triangular inlet is directed laterally and is formed by the medial margin of the coracoid process, which extends anteriorly from the superior margin of the scapula.

The base of the axillary inlet’s triangular opening is the lateral margin of rib I.

Large blood vessels passing between the axillary inlet and superior thoracic aperture do so by passing over rib I.

Proximal parts of the brachial plexus also pass between the neck and upper limb by passing through the axillary inlet.

Breast

The breasts, consisting of secretory glands, superficial fascia, and overlying skin, are in the pectoral region on each side of the anterior thoracic wall (Fig. 3.9).

Vessels, lymphatics, and nerves associated with the breast are as follows:

Key features

Vertebral level TIV/V

When working with patients, physicians use vertebral levels to determine the position of important anatomical structures within body regions.

The horizontal plane passing through the disc that separates thoracic vertebrae TIV and TV is one of the most significant planes in the body (Fig. 3.10) because it:

Venous shunts from left to right

The right atrium is the chamber of the heart that receives deoxygenated blood returning from the body. It lies on the right side of the midline, and the two major veins, the superior and inferior venae cavae, that drain into it are also located on the right side of the body. This means that, to get to the right side of the body, all blood coming from the left side has to cross the midline. This left-to-right shunting is carried out by a number of important and, in some cases, very large veins, several of which are in the thorax (Fig. 3.11).

In adults, the left brachiocephalic vein crosses the midline immediately posterior to the manubrium and delivers blood from the left side of the head and neck, the left upper limb, and part of the left thoracic wall into the superior vena cava.

The hemiazygos and accessory hemiazygos veins drain posterior and lateral parts of the left thoracic wall, pass immediately anterior to the bodies of thoracic vertebrae, and flow into the azygos vein on the right side, which ultimately connects with the superior vena cava.

Segmental neurovascular supply of thoracic wall

The arrangement of vessels and nerves that supply the thoracic wall reflects the segmental organization of the wall. Arteries to the wall arise from two sources:

Posterior and anterior intercostal vessels branch segmentally from these arteries and pass laterally around the wall, mainly along the inferior margin of each rib (Fig. 3.12A). Running with these vessels are intercostal nerves (the anterior rami of thoracic spinal nerves), which innervate the wall, related parietal pleura, and associated skin. The position of these nerves and vessels relative to the ribs must be considered when passing objects, such as chest tubes, through the thoracic wall.

Dermatomes of the thorax generally reflect the segmental organization of the thoracic spinal nerves (Fig. 3.12B). The exception occurs, anteriorly and superiorly, with the first thoracic dermatome, which is located mostly in the upper limb, and not on the trunk.

The anterosuperior region of the trunk receives branches from the anterior ramus of C4 via supraclavicular branches of the cervical plexus.

The highest thoracic dermatome on the anterior chest wall is T2, which also extends into the upper limb. In the midline, skin over the xiphoid process is innervated by T6.

Dermatomes of T7 to T12 follow the contour of the ribs onto the anterior abdominal wall (Fig. 3.12C).

Sympathetic system

All preganglionic nerve fibers of the sympathetic system are carried out of the spinal cord in spinal nerves T1 to L2 (Fig. 3.13). This means that sympathetic fibers found anywhere in the body ultimately emerge from the spinal cord as components of these spinal nerves. Preganglionic sympathetic fibers destined for the head are carried out of the spinal cord in spinal nerve T1.

Flexible wall and inferior thoracic aperture

The thoracic wall is expandable because most ribs articulate with other components of the wall by true joints that allow movement, and because of the shape and orientation of the ribs (Fig. 3.14).

A rib’s posterior attachment is superior to its anterior attachment. Therefore, when a rib is elevated, it moves the anterior thoracic wall forward relative to the posterior wall, which is fixed. In addition, the middle part of each rib is inferior to its two ends, so that when this region of the rib is elevated, it expands the thoracic wall laterally. Finally, because the diaphragm is muscular, it changes the volume of the thorax in the vertical direction.

Changes in the anterior, lateral, and vertical dimensions of the thoracic cavity are important for breathing.

Innervation of the diaphragm

The diaphragm is innervated by two phrenic nerves that originate, one on each side, as branches of the cervical plexus in the neck (Fig. 3.15). They arise from the anterior rami of cervical nerves C3, C4, and C5, with the major contribution coming from C4.

The phrenic nerves pass vertically through the neck, the superior thoracic aperture, and the mediastinum to supply motor innervation to the entire diaphragm, including the crura (muscular extensions that attach the diaphragm to the upper lumbar vertebrae). In the mediastinum, the phrenic nerves pass anteriorly to the roots of the lungs.

The tissues that initially give rise to the diaphragm are in an anterior position on the embryological disc before the head fold develops, which explains the cervical origin of the nerves that innervate the diaphragm. In other words, the tissue that gives rise to the diaphragm originates superior to the ultimate location of the diaphragm.

Spinal cord injuries below the level of the origin of the phrenic nerve do not affect movement of the diaphragm.

Regional anatomy

The cylindrical thorax consists of:

The thorax houses the heart and lungs, acts as a conduit for structures passing between the neck and the abdomen, and plays a principal role in breathing. In addition, the thoracic wall protects the heart and lungs and provides support for the upper limbs. Muscles anchored to the anterior thoracic wall provide some of this support, and together with their associated connective tissues, nerves, and vessels, and the overlying skin and superficial fascia, define the pectoral region.

Pectoral region

The pectoral region is external to the anterior thoracic wall and anchors the upper limb to the trunk. It consists of:

Nerves, vessels, and lymphatics in the superficial compartment emerge from the thoracic wall, the axilla, and the neck.

Breast

The breasts consist of mammary glands and associated skin and connective tissues. The mammary glands are modified sweat glands in the superficial fascia anterior to the pectoral muscles and the anterior thoracic wall (Fig. 3.16).

The mammary glands consist of a series of ducts and associated secretory lobules. These converge to form 15 to 20 lactiferous ducts, which open independently onto the nipple. The nipple is surrounded by a circular pigmented area of skin termed the areola.

A well-developed, connective tissue stroma surrounds the ducts and lobules of the mammary gland. In certain regions, this condenses to form well-defined ligaments, the suspensory ligaments of breast, which are continuous with the dermis of the skin and support the breast. Carcinoma of the breast creates tension on these ligaments, causing pitting of the skin.

In nonlactating women, the predominant component of the breasts is fat, while glandular tissue is more abundant in lactating women.

The breast lies on deep fascia related to the pectoralis major muscle and other surrounding muscles. A layer of loose connective tissue (the retromammary space) separates the breast from the deep fascia and provides some degree of movement over underlying structures.

The base, or attached surface, of each breast extends vertically from ribs II to VI, and transversely from the sternum to as far laterally as the midaxillary line.

Lymphatic drainage

Lymphatic drainage of the breast is as follows:

Axillary nodes drain into the subclavian trunks, parasternal nodes drain into the bronchomediastinal trunks, and intercostal nodes drain either into the thoracic duct or into the bronchomediastinal trunks.

Breast in men

The breast in men is rudimentary and consists only of small ducts, often composed of cords of cells, that normally do not extend beyond the areola. Breast cancer can occur in men.

In the clinic

Breast cancer

Breast cancer is one of the most common malignancies in women. It develops in the cells of the acini, lactiferous ducts, and lobules of the breast. Tumor growth and spread depends on the exact cellular site of origin of the cancer. These factors affect the response to surgery, chemotherapy, and radiotherapy. Breast tumors spread via the lymphatics and veins, or by direct invasion.

When a patient has a lump in the breast, a diagnosis of breast cancer is confirmed by a biopsy and histological evaluation. Once confirmed, the clinician must attempt to stage the tumor.

Staging the tumor means defining the:

Computed tomography (CT) scanning of the body may be carried out to look for any spread to the lungs (pulmonary metastases), liver (hepatic metastases), or bone (bony metastases).

Further imaging may include bone scanning using radioactive isotopes, which are avidly taken up by the tumor metastases in bone.

Lymph drainage of the breast is complex. Lymph vessels pass to axillary, supraclavicular, and parasternal nodes and may even pass to abdominal lymph nodes, as well as to the opposite breast. Containment of nodal metastatic breast cancer is therefore potentially difficult because it can spread through many lymph node groups.

Subcutaneous lymphatic obstruction and tumor growth pull on connective tissue ligaments in the breast, resulting in the appearance of an orange peel texture (peau d’orange) on the surface of the breast. Further subcutaneous spread can induce a rare manifestation of breast cancer that produces a hard, woody texture to the skin (cancer en cuirasse).

A mastectomy (surgical removal of the breast) involves excision of the breast tissue to the pectoralis major muscle and fascia. Within the axilla the breast tissue must be removed from the medial axillary wall. Closely applied to the medial axillary wall is the long thoracic nerve. Damage to this nerve can result in paralysis of the serratus anterior muscle, producing a characteristic “winged” scapula. It is also possible to damage the nerve to the latissimus dorsi muscle, and this may affect extension, medial rotation, and adduction of the humerus.

Muscles of the pectoral region

Each pectoral region contains the pectoralis major, pectoralis minor, and subclavius muscles (Fig. 3.17 and Table 3.1). All originate from the anterior thoracic wall and insert into bones of the upper limb.

Table 3.1

Muscles of the pectoral region

Muscle Origin Insertion Innervation Function
Pectoralis major Medial half of clavicle and anterior surface of sternum, first seven costal cartilages, aponeurosis of external oblique Lateral lip of intertubercular sulcus of humerus Medial and lateral pectoral nerves Adduction, medial rotation, and flexion of the humerus at the shoulder joint
Subclavius Rib I at junction between rib and costal cartilage Groove on inferior surface of middle third of clavicle Nerve to subclavius Pulls clavicle medially to stabilize sternoclavicular joint; depresses tip of shoulder
Pectoralis minor Anterior surfaces of the third, fourth, and fifth ribs, and deep fascia overlying the related intercostal spaces Coracoid process of scapula Medial pectoral nerves Depresses tip of shoulder; protracts scapula

image

Subclavius and pectoralis minor muscles

The subclavius and pectoralis minor muscles underlie the pectoralis major:

Both the subclavius and pectoralis minor pull the tip of the shoulder inferiorly.

A continuous layer of deep fascia, the clavipectoral fascia, encloses the subclavius and pectoralis minor and attaches to the clavicle above and to the floor of the axilla below.

The muscles of the pectoral region form the anterior wall of the axilla, a region between the upper limb and the neck through which all major structures pass. Nerves, vessels, and lymphatics that pass between the pectoral region and the axilla pass through the clavipectoral fascia between the subclavius and pectoralis minor or pass under the inferior margins of the pectoralis major and minor.

Thoracic wall

The thoracic wall is segmental in design and composed of skeletal elements and muscles. It extends between:

Skeletal framework

The skeletal elements of the thoracic wall consist of the thoracic vertebrae, intervertebral discs, ribs, and sternum.

Thoracic vertebrae

There are twelve thoracic vertebrae, each of which is characterized by articulations with ribs.

Typical thoracic vertebra

A typical thoracic vertebra has a heart-shaped vertebral body, with roughly equal dimensions in the transverse and anteroposterior directions, and a long spinous process (Fig. 3.18). The vertebral foramen is generally circular and the laminae are broad and overlap with those of the vertebra below. The superior articular processes are flat, with their articular surfaces facing almost directly posteriorly, while the inferior articular processes project from the laminae and their articular facets face anteriorly. The transverse processes are club shaped and project posterolaterally.

Articulation with ribs

A typical thoracic vertebra has three sites on each side for articulation with ribs.

Not all vertebrae articulate with ribs in the same fashion (Fig. 3.19):

Ribs

There are twelve pairs of ribs, each terminating anteriorly in a costal cartilage (Fig. 3.20).

Although all ribs articulate with the vertebral column, only the costal cartilages of the upper seven ribs, known as true ribs, articulate directly with the sternum. The remaining five pairs of ribs are false ribs:

A typical rib consists of a curved shaft with anterior and posterior ends (Fig. 3.21). The anterior end is continuous with its costal cartilage. The posterior end articulates with the vertebral column and is characterized by a head, neck, and tubercle.

The head is somewhat expanded and typically presents two articular surfaces separated by a crest. The smaller superior surface articulates with the inferior costal facet on the body of the vertebra above, whereas the larger inferior facet articulates with the superior costal facet of its own vertebra.

The neck is a short flat region of bone that separates the head from the tubercle.

The tubercle projects posteriorly from the junction of the neck with the shaft and consists of two regions, an articular part and a nonarticular part:

The shaft is generally thin and flat with internal and external surfaces.

The superior margin is smooth and rounded, whereas the inferior margin is sharp. The shaft bends forward just laterally to the tubercle at a site termed the angle. It also has a gentle twist around its longitudinal axis so that the external surface of the anterior part of the shaft faces somewhat superiorly relative to the posterior part. The inferior margin of the internal surface is marked by a distinct costal groove.

Distinct features of upper and lower ribs

The upper and lower ribs have distinct features (Fig. 3.22).

Sternum

The adult sternum consists of three major elements: the broad and superiorly positioned manubrium of the sternum, the narrow and longitudinally oriented body of the sternum, and the small and inferiorly positioned xiphoid process (Fig. 3.23).

Body of the sternum

The body of the sternum is flat.

The anterior surface of the body of the sternum is often marked by transverse ridges that represent lines of fusion between the segmental elements called sternebrae, from which this part of the sternum arises embryologically.

The lateral margins of the body of the sternum have articular facets for costal cartilages. Superiorly, each lateral margin has a demifacet for articulation with the inferior aspect of the second costal cartilage. Inferior to this demifacet are four facets for articulation with the costal cartilages of ribs III to VI.

At the inferior end of the body of the sternum is a demifacet for articulation with the upper demifacet on the seventh costal cartilage. The inferior end of the body of the sternum is attached to the xiphoid process.

Joints

Costovertebral joints

A typical rib articulates with:

Together, the costovertebral joints and related ligaments allow the necks of the ribs either to rotate around their longitudinal axes, which occurs mainly in the upper ribs, or to ascend and descend relative to the vertebral column, which occurs mainly in the lower ribs. The combined movements of all of the ribs on the vertebral column are essential for altering the volume of the thoracic cavity during breathing.

Costotransverse joints

Costotransverse joints are synovial joints between the tubercle of a rib and the transverse process of the related vertebra (Fig. 3.24). The capsule surrounding each joint is thin. The joint is stabilized by two strong extracapsular ligaments that span the space between the transverse process and the rib on the medial and lateral sides of the joint:

A third ligament, the superior costotransverse ligament, attaches the superior surface of the neck of the rib to the transverse process of the vertebra above.

Slight gliding movements occur at the costotransverse joints.

Manubriosternal and xiphisternal joints

The joints between the manubrium and the body of the sternum and between the body of the sternum and the xiphoid process are usually symphyses (Fig. 3.25). Only slight angular movements occur between the manubrium and the body of the sternum during respiration. The joint between the body of the sternum and the xiphoid process often becomes ossified with age.

A clinically useful feature of the manubriosternal joint is that it can be palpated easily. This is because the manubrium normally angles posteriorly on the body of the sternum, forming a raised feature referred to as the sternal angle. This elevation marks the site of articulation of rib II with the sternum. Rib I is not palpable, because it lies inferior to the clavicle and is embedded in tissues at the base of the neck. Therefore, rib II is used as a reference for counting ribs and can be felt immediately lateral to the sternal angle.

In addition, the sternal angle lies on a horizontal plane that passes through the intervertebral disc between vertebrae TIV and TV (see Fig. 3.10). This plane separates the superior mediastinum from the inferior mediastinum and marks the superior border of the pericardium. The plane also passes through the end of the ascending aorta and the beginning of the arch of the aorta, the end of the arch of the aorta and the beginning of the thoracic aorta, and the bifurcation of the trachea, and just superior to the pulmonary trunk (see Fig. 3.79 and 3.86).

Intercostal spaces

Intercostal spaces lie between adjacent ribs and are filled by intercostal muscles (Fig. 3.26).

Intercostal nerves and associated major arteries and veins lie in the costal groove along the inferior margin of the superior rib and pass in the plane between the inner two layers of muscles.

In each space, the vein is the most superior structure and is therefore highest in the costal groove. The artery is inferior to the vein, and the nerve is inferior to the artery and often not protected by the groove. Therefore, the nerve is the structure most at risk when objects perforate the upper aspect of an intercostal space. Small collateral branches of the major intercostal nerves and vessels are often present superior to the inferior rib below.

Deep to the intercostal spaces and ribs, and separating these structures from the underlying pleura, is a layer of loose connective tissue, called endothoracic fascia, which contains variable amounts of fat.

Superficial to the spaces are deep fascia, superficial fascia, and skin. Muscles associated with the upper limbs and back overlie the spaces.

Muscles

Muscles of the thoracic wall include those that fill and support the intercostal spaces, those that pass between the sternum and the ribs, and those that cross several ribs between costal attachments (Table 3.2).

Table 3.2

Muscles of the thoracic wall

Muscle Superior attachment Inferior attachment Innervation Function
External intercostal Inferior margin of rib above Superior margin of rib below Intercostal nerves; T1–T11 Most active during inspiration; supports intercostal space; moves ribs superiorly
Internal intercostal Lateral edge of costal groove of rib above Superior margin of rib below deep to the attachment of the related external intercostal Intercostal nerves; T1–T11 Most active during expiration; supports intercostal space; moves ribs inferiorly
Innermost intercostal Medial edge of costal groove of rib above Internal aspect of superior margin of rib below Intercostal nerves; T1–T11 Acts with internal intercostal muscles
Subcostales Internal surface (near angle) of lower ribs Internal surface of second or third rib below Related intercostal nerves May depress ribs
Transversus thoracis Inferior margins and internal surfaces of costal cartilages of second to sixth ribs Inferior aspect of deep surface of body of sternum, xiphoid process, and costal cartilages of ribs IV–VII Related intercostal nerves Depresses costal cartilages

image

The muscles of the thoracic wall, together with muscles between the vertebrae and ribs posteriorly (i.e., the levatores costarum and serratus posterior superior and serratus posterior inferior muscles) alter the position of the ribs and sternum and so change the thoracic volume during breathing. They also reinforce the thoracic wall.

Intercostal muscles

The intercostal muscles are three flat muscles found in each intercostal space that pass between adjacent ribs (Fig. 3.27). Individual muscles in this group are named according to their positions:

The intercostal muscles are innervated by the related intercostal nerves. As a group, the intercostal muscles provide structural support for the intercostal spaces during breathing. They can also move the ribs.

External intercostal muscles

The eleven pairs of external intercostal muscles extend from the inferior margins (lateral edges of costal grooves) of the ribs above to the superior margins of the ribs below. When the thoracic wall is viewed from a lateral position, the muscle fibers pass obliquely anteroinferiorly (Fig. 3.27). The muscles extend around the thoracic wall from the regions of the tubercles of the ribs to the costal cartilages, where each layer continues as a thin connective tissue aponeurosis termed the external intercostal membrane. The external intercostal muscles are most active in inspiration.

Internal intercostal muscles

The eleven pairs of internal intercostal muscles pass between the most inferior lateral edge of the costal grooves of the ribs above, to the superior margins of the ribs below. They extend from parasternal regions, where the muscles course between adjacent costal cartilages, to the angle of the ribs posteriorly (Fig. 3.27). This layer continues medially toward the vertebral column, in each intercostal space, as the internal intercostal membrane. The muscle fibers pass in the opposite direction to those of the external intercostal muscles. When the thoracic wall is viewed from a lateral position, the muscle fibers pass obliquely posteroinferiorly. The internal intercostal muscles are most active during expiration.

Innermost intercostal muscles

The innermost intercostal muscles are the least distinct of the intercostal muscles, and the fibers have the same orientation as the internal intercostals (Fig. 3.27). These muscles are most evident in the lateral thoracic wall. They extend between the inner surfaces of adjacent ribs from the medial edge of the costal groove to the deep surface of the rib below. Importantly, the neurovascular bundles associated with the intercostal spaces pass around the thoracic wall in the costal grooves in a plane between the innermost and internal intercostal muscles.

Subcostales

The subcostales are in the same plane as the innermost intercostals, span multiple ribs, and are more numerous in lower regions of the posterior thoracic wall (Fig. 3.28A). They extend from the internal surfaces of one rib to the internal surface of the second (next) or third rib below. Their fibers parallel the course of the internal intercostal muscles and extend from the angle of the ribs to more medial positions on the ribs below.

Arterial supply

Vessels that supply the thoracic wall consist mainly of posterior and anterior intercostal arteries, which pass around the wall between adjacent ribs in intercostal spaces (Fig. 3.29). These arteries originate from the aorta and internal thoracic arteries, which in turn arise from the subclavian arteries in the root of the neck. Together, the intercostal arteries form a basket-like pattern of vascular supply around the thoracic wall.

Posterior intercostal arteries

Posterior intercostal arteries originate from vessels associated with the posterior thoracic wall. The upper two posterior intercostal arteries on each side are derived from the supreme intercostal artery, which descends into the thorax as a branch of the costocervical trunk in the neck. The costocervical trunk is a posterior branch of the subclavian artery (Fig. 3.29).

The remaining nine pairs of posterior intercostal arteries arise from the posterior surface of the thoracic aorta. Because the aorta is on the left side of the vertebral column, those posterior intercostal vessels passing to the right side of the thoracic wall cross the midline anterior to the bodies of the vertebrae and therefore are longer than the corresponding vessels on the left.

In addition to having numerous branches that supply various components of the wall, the posterior intercostal arteries have branches that accompany lateral cutaneous branches of the intercostal nerves to superficial regions.

Anterior intercostal arteries

The anterior intercostal arteries originate directly or indirectly as lateral branches from the internal thoracic arteries (Fig. 3.29).

Each internal thoracic artery arises as a major branch of the subclavian artery in the neck. It passes anteriorly over the cervical dome of the pleura and descends vertically through the superior thoracic aperture and along the deep aspect of the anterior thoracic wall. On each side, the internal thoracic artery lies posterior to the costal cartilages of the upper six ribs and about 1 cm lateral to the sternum. At approximately the level of the sixth intercostal space, it divides into two terminal branches:

Anterior intercostal arteries that supply the upper six intercostal spaces arise as lateral branches from the internal thoracic artery, whereas those supplying the lower spaces arise from the musculophrenic artery.

In each intercostal space, the anterior intercostal arteries usually have two branches:

The distributions of the anterior and posterior intercostal vessels overlap and can develop anastomotic connections. The anterior intercostal arteries are generally smaller than the posterior vessels.

In addition to anterior intercostal arteries and a number of other branches, the internal thoracic arteries give rise to perforating branches that pass directly forward between the costal cartilages to supply structures external to the thoracic wall. These vessels travel with the anterior cutaneous branches of the intercostal nerves.

Lymphatic drainage

Lymphatic vessels of the thoracic wall drain mainly into lymph nodes associated with the internal thoracic arteries (parasternal nodes), with the heads and necks of ribs (intercostal nodes), and with the diaphragm (diaphragmatic nodes) (Fig. 3.31). Diaphragmatic nodes are posterior to the xiphoid and at sites where the phrenic nerves penetrate the diaphragm. They also occur in regions where the diaphragm is attached to the vertebral column.

Parasternal nodes drain into bronchomediastinal trunks. Intercostal nodes in the upper thorax also drain into bronchomediastinal trunks, whereas intercostal nodes in the lower thorax drain into the thoracic duct.

Nodes associated with the diaphragm interconnect with parasternal, prevertebral, and juxta-esophageal nodes, brachiocephalic nodes (anterior to the brachiocephalic veins in the superior mediastinum), and lateral aortic/lumbar nodes (in the abdomen).

Superficial regions of the thoracic wall drain mainly into axillary lymph nodes in the axilla or parasternal nodes.

Innervation

Intercostal nerves

Innervation of the thoracic wall is mainly by the intercostal nerves, which are the anterior rami of spinal nerves T1 to T11 and lie in the intercostal spaces between adjacent ribs. The anterior ramus of spinal nerve T12 (the subcostal nerve) is inferior to rib XII (Fig. 3.32).

A typical intercostal nerve passes laterally around the thoracic wall in an intercostal space. The largest of the branches is the lateral cutaneous branch, which pierces the lateral thoracic wall and divides into an anterior branch and a posterior branch that innervate the overlying skin.

The intercostal nerves end as anterior cutaneous branches, which emerge either parasternally, between adjacent costal cartilages, or laterally to the midline, on the anterior abdominal wall, to supply the skin.

In addition to these major branches, small collateral branches can be found in the intercostal space running along the superior border of the lower rib.

In the thorax, the intercostal nerves carry:

Sensory innervation of the skin overlying the upper thoracic wall is supplied by cutaneous branches (supraclavicular nerves), which descend from the cervical plexus in the neck.

In addition to innervating the thoracic wall, intercostal nerves innervate other regions:

Diaphragm

The diaphragm is a thin musculotendinous structure that fills the inferior thoracic aperture and separates the thoracic cavity from the abdominal cavity (Fig. 3.33 and see Chapter 4). It is attached peripherally to the:

From these peripheral attachments, muscle fibers converge to join the central tendon. The pericardium is attached to the middle part of the central tendon.

In the median sagittal plane, the diaphragm slopes inferiorly from its anterior attachment to the xiphoid, approximately at vertebral level TVIII/IX, to its posterior attachment to the median arcuate ligament, crossing anteriorly to the aorta at approximately vertebral level TXII.

Structures traveling between the thorax and abdomen pass through the diaphragm or between the diaphragm and its peripheral attachments:

Other structures outside the posterior attachments of the diaphragm lateral to the aortic hiatus include the sympathetic trunks. The greater, lesser, and least splanchnic nerves penetrate the crura.

Arterial supply

The arterial supply to the diaphragm is from vessels that arise superiorly and inferiorly to it (see Fig. 3.33). From above, pericardiacophrenic and musculophrenic arteries supply the diaphragm. These vessels are branches of the internal thoracic arteries. Superior phrenic arteries, which arise directly from lower parts of the thoracic aorta, and small branches from intercostal arteries contribute to the supply. The largest arteries supplying the diaphragm arise from below it. These arteries are the inferior phrenic arteries, which branch directly from the abdominal aorta.

Movements of the thoracic wall and diaphragm during breathing

One of the principal functions of the thoracic wall and the diaphragm is to alter the volume of the thorax and thereby move air in and out of the lungs.

During breathing, the dimensions of the thorax change in the vertical, lateral, and anteroposterior directions. Elevation and depression of the diaphragm significantly alter the vertical dimensions of the thorax. Depression results when the muscle fibers of the diaphragm contract. Elevation occurs when the diaphragm relaxes.

Changes in the anteroposterior and lateral dimensions result from elevation and depression of the ribs (Fig. 3.34). The posterior ends of the ribs articulate with the vertebral column, whereas the anterior ends of most ribs articulate with the sternum or adjacent ribs.

Because the anterior ends of the ribs are inferior to the posterior ends, when the ribs are elevated, they move the sternum upward and forward. Also, the angle between the body of the sternum and the manubrium may become slightly less acute. When the ribs are depressed, the sternum moves downward and backward. This “pump handle” movement changes the dimensions of the thorax in the anteroposterior direction (Fig. 3.34A).

As well as the anterior ends of the ribs being lower than the posterior ends, the middles of the shafts tend to be lower than the two ends. When the shafts are elevated, the middles of the shafts move laterally. This “bucket handle” movement increases the lateral dimensions of the thorax (Fig. 3.34B).

Any muscles attaching to the ribs can potentially move one rib relative to another and therefore act as accessory respiratory muscles. Muscles in the neck and the abdomen can fix or alter the positions of upper and lower ribs.

Pleural cavities

Two pleural cavities, one on either side of the mediastinum, surround the lungs (Fig. 3.35):

Pleura

Each pleural cavity is lined by a single layer of flat cells, mesothelium, and an associated layer of supporting connective tissue; together, they form the pleura.

The pleura is divided into two major types, based on location:

Each pleural cavity is the potential space enclosed between the visceral and parietal pleurae. They normally contain only a very thin layer of serous fluid. As a result, the surface of the lung, which is covered by visceral pleura, directly opposes and freely slides over the parietal pleura attached to the wall.

Parietal pleura

The names given to the parietal pleura correspond to the parts of the wall with which they are associated (Fig. 3.36):

Covering the superior surface of the cervical pleura is a distinct dome-like layer of fascia, the suprapleural membrane (Fig. 3.36). This connective tissue membrane is attached laterally to the medial margin of the first rib and behind to the transverse process of vertebra CVII. Superiorly, the membrane receives muscle fibers from some of the deep muscles in the neck (scalene muscles) that function to keep the membrane taught. The suprapleural membrane provides apical support for the pleural cavity in the root of the neck.

In the region of vertebrae TV to TVII, the mediastinal pleura reflects off the mediastinum as a tubular, sleeve-like covering for structures (i.e., airway, vessels, nerves, lymphatics) that pass between the lung and mediastinum. This sleeve-like covering, and the structures it contains, forms the root of the lung. The root joins the medial surface of the lung at an area referred to as the hilum of the lung. Here, the mediastinal pleura is continuous with the visceral pleura.

The parietal pleural is innervated by somatic afferent fibers. The costal pleura is innervated by branches from the intercostal nerves, and pain would be felt in relation to the thoracic wall. The diaphragmatic pleura and the mediastinal pleura are innervated mainly by the phrenic nerves (originating at spinal cord levels C3, C4, and C5). Pain from these areas would refer to the C3, C4, and C5 dermatomes (lateral neck and the supraclavicular region of the shoulder).

Peripheral reflections

The peripheral reflections of parietal pleura mark the extent of the pleural cavities (Fig. 3.37).

Superiorly, the pleural cavity can project as much as 3–4 cm above the first costal cartilage but does not extend above the neck of rib I. This limitation is caused by the inferior slope of rib I to its articulation with the manubrium.

Anteriorly, the pleural cavities approach each other posterior to the upper part of the sternum. However, posterior to the lower part of the sternum, the parietal pleura does not come as close to the midline on the left side as it does on the right because the middle mediastinum, containing the pericardium and heart, bulges to the left.

Inferiorly, the costal pleura reflects onto the diaphragm above the costal margin. In the midclavicular line, the pleural cavity extends inferiorly to approximately rib VIII. In the midaxillary line, it extends to rib X. From this point, the inferior margin courses somewhat horizontally, crossing ribs XI and XII to reach vertebra TXII. From the midclavicular line to the vertebral column, the inferior boundary of the pleura can be approximated by a line that runs between rib VIII, rib X, and vertebra TXII.

Pleural recesses

The lungs do not completely fill the anterior or posterior inferior regions of the pleural cavities (Fig. 3.38). This results in recesses in which two layers of parietal pleura become opposed. Expansion of the lungs into these spaces usually occurs only during forced inspiration; the recesses also provide potential spaces in which fluids can collect and from which fluids can be aspirated.

Costodiaphragmatic recesses

The largest and clinically most important recesses are the costodiaphragmatic recesses, which occur in each pleural cavity between the costal pleura and diaphragmatic pleura (Fig. 3.38). The costodiaphragmatic recesses are the regions between the inferior margin of the lungs and inferior margin of the pleural cavities. They are deepest after forced expiration and shallowest after forced inspiration.

During quiet respiration, the inferior margin of the lung crosses rib VI in the midclavicular line and rib VIII in the midaxillary line, and then courses somewhat horizontally to reach the vertebral column at vertebral level TX. Thus, from the midclavicular line and around the thoracic wall to the vertebral column, the inferior margin of the lung can be approximated by a line running between rib VI, rib VIII, and vertebra TX. The inferior margin of the pleural cavity at the same points is rib VIII, rib X, and vertebra TXII. The costodiaphragmatic recess is the region between the two margins.

During expiration, the inferior margin of the lung rises and the costodiaphragmatic recess becomes larger.

Lungs

The two lungs are organs of respiration and lie on either side of the mediastinum surrounded by the right and left pleural cavities. Air enters and leaves the lungs via main bronchi, which are branches of the trachea.

The pulmonary arteries deliver deoxygenated blood to the lungs from the right ventricle of the heart. Oxygenated blood returns to the left atrium via the pulmonary veins.

The right lung is normally a little larger than the left lung because the middle mediastinum, containing the heart, bulges more to the left than to the right.

Each lung has a half-cone shape, with a base, apex, two surfaces, and three borders (Fig. 3.39).

The lungs lie directly adjacent to, and are indented by, structures contained in the overlying area. The heart and major vessels form bulges in the mediastinum that indent the medial surfaces of the lung; the ribs indent the costal surfaces. Pathology, such as tumors, or abnormalities in one structure can affect the related structure.

Root and hilum

The root of each lung is a short tubular collection of structures that together attach the lung to structures in the mediastinum (Fig. 3.40). It is covered by a sleeve of mediastinal pleura that reflects onto the surface of the lung as visceral pleura. The region outlined by this pleural reflection on the medial surface of the lung is the hilum, where structures enter and leave.

A thin blade-like fold of pleura projects inferiorly from the root of the lung and extends from the hilum to the mediastinum. This structure is the pulmonary ligament. It may stabilize the position of the inferior lobe and may also accommodate the down-and-up translocation of structures in the root during breathing.

In the mediastinum, the vagus nerves pass immediately posterior to the roots of the lungs, while the phrenic nerves pass immediately anterior to them.

Within each root and located in the hilum are:

Generally, the pulmonary artery is superior at the hilum, the pulmonary veins are inferior, and the bronchi are somewhat posterior in position.

On the right side, the lobar bronchus to the superior lobe branches from the main bronchus in the root, unlike on the left where it branches within the lung itself, and is superior to the pulmonary artery.

Right lung

The right lung has three lobes and two fissures (Fig. 3.41A). Normally, the lobes are freely movable against each other because they are separated, almost to the hilum, by invaginations of visceral pleura. These invaginations form the fissures:

The approximate position of the oblique fissure on a patient, in quiet respiration, can be marked by a curved line on the thoracic wall that begins roughly at the spinous process of the vertebra TIV level of the spine, crosses the fifth interspace laterally, and then follows the contour of rib VI anteriorly (see p. 239).

The horizontal fissure follows the fourth intercostal space from the sternum until it meets the oblique fissure as it crosses rib V.

The orientations of the oblique and horizontal fissures determine where clinicians should listen for lung sounds from each lobe.

The largest surface of the superior lobe is in contact with the upper part of the anterolateral wall and the apex of this lobe projects into the root of the neck. The surface of the middle lobe lies mainly adjacent to the lower anterior and lateral wall. The costal surface of the inferior lobe is in contact with the posterior and inferior walls.

When listening to lung sounds from each of the lobes, it is important to position the stethoscope on those areas of the thoracic wall related to the underlying positions of the lobes (see p. 240).

The medial surface of the right lung lies adjacent to a number of important structures in the mediastinum and the root of the neck (Fig. 3.41B). These include the:

The right subclavian artery and vein arch over and are related to the superior lobe of the right lung as they pass over the dome of the cervical pleura and into the axilla.

Left lung

The left lung is smaller than the right lung and has two lobes separated by an oblique fissure (Fig. 3.42A). The oblique fissure of the left lung is slightly more oblique than the corresponding fissure of the right lung.

During quiet respiration, the approximate position of the left oblique fissure can be marked by a curved line on the thoracic wall that begins between the spinous processes of vertebrae TIII and TIV, crosses the fifth interspace laterally, and follows the contour of rib VI anteriorly (see pp. 237–238).

As with the right lung, the orientation of the oblique fissure determines where to listen for lung sounds from each lobe.

The largest surface of the superior lobe is in contact with the upper part of the anterolateral wall, and the apex of this lobe projects into the root of the neck. The costal surface of the inferior lobe is in contact with the posterior and inferior walls.

When listening to lung sounds from each of the lobes, the stethoscope should be placed on those areas of the thoracic wall related to the underlying positions of the lobes (see p. 240).

The inferior portion of the medial surface of the left lung, unlike the right lung, is notched because of the heart’s projection into the left pleural cavity from the middle mediastinum.

From the anterior border of the lower part of the superior lobe a tongue-like extension (the lingula of the left lung) projects over the heart bulge.

The medial surface of the left lung lies adjacent to a number of important structures in the mediastinum and root of the neck (Fig. 3.42B). These include the:

The left subclavian artery and vein arch over and are related to the superior lobe of the left lung as they pass over the dome of the cervical pleura and into the axilla.

Bronchial tree

The trachea is a flexible tube that extends from vertebral level CVI in the lower neck to vertebral level TIV/V in the mediastinum where it bifurcates into a right and a left main bronchus (Fig. 3.43). The trachea is held open by C-shaped transverse cartilage rings embedded in its wall—the open part of the C facing posteriorly. The lowest tracheal ring has a hook-shaped structure, the carina, that projects backwards in the midline between the origins of the two main bronchi. The posterior wall of the trachea is composed mainly of smooth muscle.

Each main bronchus enters the root of a lung and passes through the hilum into the lung itself. The right main bronchus is wider and takes a more vertical course through the root and hilum than the left main bronchus (Fig. 3.43A). Therefore, inhaled foreign bodies tend to lodge more frequently on the right side than on the left.

The main bronchus divides within the lung into lobar bronchi (secondary bronchi), each of which supplies a lobe. On the right side, the lobar bronchus to the superior lobe originates within the root of the lung.

The lobar bronchi further divide into segmental bronchi (tertiary bronchi), which supply bronchopulmonary segments (Fig. 3.43B).

Within each bronchopulmonary segment, the segmental bronchi give rise to multiple generations of divisions and, ultimately, to bronchioles, which further subdivide and supply the respiratory surfaces. The walls of the bronchi are held open by discontinuous elongated plates of cartilage, but these are not present in bronchioles.

Bronchopulmonary segments

A bronchopulmonary segment is the area of lung supplied by a segmental bronchus and its accompanying pulmonary artery branch.

Tributaries of the pulmonary vein tend to pass intersegmentally between and around the margins of segments.

Each bronchopulmonary segment is shaped like an irregular cone, with the apex at the origin of the segmental bronchus and the base projected peripherally onto the surface of the lung.

A bronchopulmonary segment is the smallest functionally independent region of a lung and the smallest area of lung that can be isolated and removed without affecting adjacent regions.

There are ten bronchopulmonary segments in each lung (Fig. 3.44); some of them fuse in the left lung.

Pulmonary arteries

The right and left pulmonary arteries originate from the pulmonary trunk and carry deoxygenated blood to the lungs from the right ventricle of the heart (Fig. 3.45).

The bifurcation of the pulmonary trunk occurs to the left of the midline just inferior to vertebral level TIV/V, and anteroinferiorly to the left of the bifurcation of the trachea.

Pulmonary veins

On each side a superior pulmonary vein and an inferior pulmonary vein carry oxygenated blood from the lungs back to the heart (Fig. 3.45). The veins begin at the hilum of the lung, pass through the root of the lung, and immediately drain into the left atrium.

Bronchial arteries and veins

The bronchial arteries (Fig. 3.45) and veins constitute the “nutritive” vascular system of the pulmonary tissues (bronchial walls and glands, walls of large vessels, and visceral pleura). They interconnect within the lung with branches of the pulmonary arteries and veins.

The bronchial arteries originate from the thoracic aorta or one of its branches:

The bronchial arteries run on the posterior surfaces of the bronchi and ramify in the lungs to supply pulmonary tissues.

The bronchial veins drain into:

Lymphatic drainage

Superficial, or subpleural, and deep lymphatics of the lung drain into lymph nodes called tracheobronchial nodes around the roots of lobar and main bronchi and along the sides of the trachea (Fig. 3.47). As a group, these lymph nodes extend from within the lung, through the hilum and root, and into the posterior mediastinum.

Efferent vessels from these nodes pass superiorly along the trachea to unite with similar vessels from parasternal nodes and brachiocephalic nodes, which are anterior to brachiocephalic veins in the superior mediastinum, to form the right and left bronchomediastinal trunks. These trunks drain directly into deep veins at the base of the neck, or may drain into the right lymphatic trunk or thoracic duct.

Share this: