Chapter 8 Spinal Cord Stimulation as a Treatment of Failed Back Surgery Syndrome
Introduction
By 1985, investigators recognized that FBSS is an important public health problem affecting 25,000 to 50,000 new patients each year.1 Many causes have been implicated for the development of FBSS, including inappropriate patient selection criteria for lumbosacral surgical procedures, shortfalls in the surgeon’s diagnostic or technical skills (operation not indicated, wrong site, incomplete decompression, and/or fusion),2 and inadequacies in available surgical techniques.
Electrical stimulation with implanted devices followed the 1965 publication of Melzack and Wall’s gate control theory of pain3 and the development of cardiac pacemaker technology. Today SCS is delivered with sophisticated techniques that take advantage of multichannel pulse generators powered by rechargeable batteries.
Establishing Diagnosis
The assessment of an FBSS patient should be multifaceted and should follow the same procedure used for any chronic pain syndrome. Review of the patient’s history and operative record (which should be sought routinely) helps to establish the underlying diagnosis. The presence of any issues of secondary gain, psychological or behavioral problems, or co-morbid pain conditions is of interest. A thorough pertinent physical examination helps to corroborate the diagnosis. A validated numeric rating or visual analog scale (VAS) can help to determine the intensity of the pain and follow the patient’s progress.4 Imaging studies provide valuable information that will guide treatment. Abnormalities revealed by imaging studies and the physical examination should be consistent with the patient’s pain. The patient might demonstrate nonorganic responses (Waddell signs) during the physical examination,5 but organic findings should predominate.
Specific prognostic factors have been identified for patients with FBSS concerning the likelihood that they might benefit from SCS. For example, the extent to which the patient’s pain is radicular is important (relieving axial low back pain with SCS is technically more difficult than relieving radicular pain).6,7 Technological advances, however, continue to permit clinicians to improve outcomes and extend the circumstances in which SCS is indicated for FBBS.
Anatomy
FBSS often occurs because a surgeon has assumed that a patient’s pain was caused by an anatomical abnormality that could be corrected with a surgical procedure. The same or similar anatomical abnormalities, however, might occur in asymptomatic individuals.8 Indeed, in consecutive patients with FBSS, Long and associates2 reported that most did not meet standard indications for their first surgical procedure. Treatment of FBSS with a repeat surgical procedure remains indicated, however, if a patient has a large disc fragment or severe stenosis compressing a nerve or nerves and causing a significant neurologic deficit or if there is gross spinal instability.
Computer modeling of the electrical fields produced by SCS in the spinal cord9,10 revealed current and voltage distributions consistent with those found in studies of cadavers and primate spinal cords. The modeling studies have predicted that bipolar stimulation with closely spaced electrical contacts separated by 6 to 8 mm or less would be the best way to target longitudinal midline fibers and that the electrical field between two cathodes bracketing the physiological midline does not sum constructively in the midline.11 Modeling has also predicted advantages for three or more columns of contacts with lateral anodes.12 Clinical experience has confirmed that correct positioning and spacing of SCS electrodes is essential for pain relief.13 The longitudinal position of an electrode largely determines the segmental effects of stimulation; and rather than being beneficial, positioning electrodes more cephalad than the target area commonly elicits unwanted local segmental effects.14
Basic Science
In experimental studies SCS suppressed long-term potentiation of WDR neurons by reducing the C-fiber response15 and also changed the concentration of several neurotransmitters and their metabolites in CSF, including serotonin and substance P,16 glycine, adenosine, and noradrenaline.17,18 Supraspinal microdialysis in conscious rats revealed that SCS causes γ-aminobutyric acid (GABA) release in periaqueductal grey matter.19 SCS also induces GABA release in the dorsal horn20 (activation of the GABA-B receptor might be responsible for the therapeutic effect of SCS) and decreases the release of glutamate and aspartate.21 It is likely that SCS has additional, complicated effects on as-yet-unidentified neural transmitters and modulators. SCS is not thought to affect opioid receptor-mediated analgesia because naloxone does not inhibit SCS efficacy.22
In patients undergoing successful SCS treatment to reduce otherwise intractable neuropathic leg pain, positron emission tomography (PET) studies suggest that SCS also modulates supraspinal neurons.23 In these patients SCS increased cerebral blood flow significantly in the thalamus contralateral to the painful leg and in the associated bilateral parietal area, and this was associated with changes in pain threshold. SCS also activated the anterior cingulate cortex and prefrontal areas, which control the emotional response to pain.
Imaging
Imaging studies undertaken to establish the diagnosis of FBSS provide information about the patient’s postsurgical anatomy and whether or not the anatomic goals of the surgical procedure were met. This might explain the failure of the surgical procedure to relieve pain; however, established nerve injury can lead to persistent pain, even after technically successful surgery (Table 8-1). Radiographic imaging studies should reveal abnormalities concordant with the patient’s current pain complaints (see Table 8-1).
Type | Timing | Purpose |
---|---|---|
MRI or CT myelogram of lumbar spine | Before SCS screening trial | Establish diagnosis of FBSS. |
Reveal postsurgical anatomy. | ||
Were goals of surgery met? | ||
Are abnormalities consistent with current pain complaint? | ||
MRI or CT myelogram of thoracic spine | Before SCS screening trial | Rule out pathology contributing to symptoms. |
Rule out pathology that would compromise electrode placement. | ||
Aid in planning electrode placement. | ||
Fluoroscopy | During SCS procedure | Guide electrode placement. |
Fluoroscopy or x-ray | After SCS procedure | Document electrode placement. |
X-ray | Diagnosis of cause of complication | Electrode migration or fracture is possible. |
CT, Computed tomography; FBSS, failed back surgery syndrome; MRI, magnetic resonance imaging; SCS, spinal cord stimulation.
Imaging is also used to guide SCS treatment (see Table 8-1). For example, imaging the thoracic spine provides valuable information about the placement of thoracic electrodes. Imaging should take place before the procedure to rule out any pathological condition that might contribute to the patient’s pain or confound (or increase the risk of) electrode placement (e.g., stenosis). Fluoroscopic imaging during the procedure helps guide placement of the electrode and documents the final electrode position. Imaging is also used to diagnose the cause of a complication such as suspected electrode migration or fracture.
Guidelines
Many guidelines are published for medical therapies, invoking principles of evidence-based medicine (EBM). Ironically, to date little evidence exists that EBM or guidelines have improved patient care. We have published a set of practice parameters as a reference for referring physicians, clinicians offering SCS treatment, and patients.24
Indications/Contraindications
Relative contraindications to SCS include unresolved issues of secondary gain (e.g., an outstanding lawsuit or compensation claim), a major untreated psychiatric co-morbidity, and/or inappropriate medication use. The presence of a demand cardiac pacemaker requires electrocardiogram (ECG) monitoring and/or changing the pacemaker mode to a fixed rate.25
Equipment
Equipment needed for the SCS screening trial (see following paragraphs) includes an electrode that will be connected to an external pulse generator and external programming equipment. A complete SCS system for chronic use requires at least one electrode (Fig. 8-1) with an extension cable and an implantable pulse generator (IPG) (Fig. 8-2).