Chapter 14 Perioperative monitoring in obstructive sleep apnea hypopnea syndrome
1 INTRODUCTION
Obstructive sleep apnea hypopnea syndrome (OSAHS) is a prevalent condition resulting from a decrease in upper airway size and patency during sleep. Apneas, hypopneas and episodes of airflow limitation occur during sleep resulting in physiological changes including reductions in oxygen saturation and arousals from sleep. Arousals lead to cessation of the respiratory event, only to be followed by repetitive airflow obstructions and arousals. The arousals cause sleep fragmentation, and secondary daytime symptoms including non-restorative sleep, excessive daytime somnolence, memory loss and other psychometric changes. Arousals also lead to a rise in sympathetic tone, with secondary changes in blood pressure, pulse and cardiac output. In addition to the nocturnal and daytime symptoms, obstructive sleep apnea may contribute to significant complications including hypertension, cardiac arrhythmias, myocardial infarction, and stroke.
2 PREOPERATIVE MANAGEMENT
2.1 SELECTION OF A SURGICAL FACILITY
The surgeon must select an operating room with personnel and equipment adequate for an elective and controlled management of the patient’s airway. Preoperative preparation is intended to improve a patient’s medical status and reduce the risk of complications. The literature is insufficient to offer guidance regarding which patients can be safely managed as an outpatient as opposed to an inpatient basis or the appropriate time for discharge from the surgical facility.1
The determination to perform surgery as an outpatient, in an outpatient surgery center with ambulance transfer to a hospital facility, admit for a short extended recovery room stay, admit to a 23-hour unit, regular hospital room or an intensive care unit should be made with consideration of associated co-morbidities, severity of apnea, sites of airway narrowing, type of anesthesia, length of time for anesthesia, need for postoperative narcotic agents, and type of surgery being performed. This determination should be made preoperatively.1 Confusing the matter is the use of the term ‘outpatient’ by some organizations to refer to all surgical stays less than 24 hours and by other organizations to label any stay after midnight as ‘inpatient.’ In a recent report of the American Society of Anesthesiologists,1 consultants were surveyed using a non-validated scoring system about opinions regarding outpatient surgery in patients with OSAS. This survey suggested that a patient with mild sleep apnea undergoing uvulopalatopharyngoplasty (UPPP) or nasal surgery was not at increased risk, while a patient with moderate sleep apnea undergoing UPPP was at increased risk of complications.1
2.3 USE OF CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP)
There is an alteration of sleep architecture and frequently sleep deprivation prior to and after surgery, including sleep deprivation due to anxiety about the surgery.2,3 Once surgery is done and these factors are gone, however, the patient is more likely to enter deeper levels of sleep and may be predisposed to more severe sleep apnea.4 It would therefore seem to be beneficial to improve sleep quality as much as possible before and after surgery. When possible, a patient should be asked to use CPAP for several weeks prior to and after surgery and to bring their machine into the hospital for perioperative use. While the majority of patients are undergoing surgery because they cannot tolerate CPAP, even moderate use of CPAP preoperatively may be beneficial.
2.4 USE OF NARCOTICS AND SEDATIVE AGENTS
Use of narcotics, sedative hypnotics and anxiolytic agents should be avoided prior to surgery in a patient with OSAS. These agents have been reported to lead to sudden death, even in the preoperative holding area.5 These drugs suppress respiration, blunt the arousal response and may lead to life-threatening hypoxemia. Benzodiazepine agonists affect upper airway muscle tone and worsen sleep apnea.6 Flurazepam has been shown to increase the Apnea Index7 and triazolam increased the arousal threshold to airway obstruction, apnea and hypopnea duration and oxygen desaturation.8 If a sleep apnea patient requires sedation or an anxiolytic, this necessitates require continuous pulse oximetry, and possibly supplemental oxygen.
2.5 REFLUX/ASPIRATION PRECAUTIONS
Obesity is common in patients with sleep disordered breath-ing, leading to an increased risk of gastroesophageal reflux9,10 which is caused by increased intra-abdominal fat, intra-abdominal pressure and higher incidence of hiatal hernia. Ninety percent of obese patients have greater than 25 ml of gastric fluid prior to surgery, a pH under 2.5 and will be at increased risk of aspiration during induction of anesthesia11 or upon extubation. In order to reduce these risks, obese patients should receive an H2 blocker, proton pump inhibitor or esophageal motility stimulant prior to surgery.12
2.6 MEDICAL/ANESTHESIA/CARDIOLOGY CLEARANCE
Patients with OSAS are at increased risk of hypertension due to an increased sympathetic drive.13,14 Undiagnosed hypertension is common in the sleep apnea patient. Blood pressure screening should be done at the time of initial evaluation or after initial diagnoses of OSAS. If blood pressure is elevated, these patients should be referred for treatment. Blood pressure should again be checked at a preoperative visit to be sure that hypertension is well controlled.
3 INTRAOPERATIVE MANAGEMENT
3.1 PREPARATION FOR INTUBATION (VENTILATION)
Prior to surgery, an anti-reflux agent and anti-sialogogue should be administered to reduce the risk of aspiration and reduce saliva production.12 It is important to maintain continuous control of the airway by the anesthesiologist. In order to ventilate the patient, the anesthetized patient will require positive pressure breathing by mask, head and neck extension, jaw protrusion, and insertion of a properly sized oral airway or long nasal airway in order to keep the tongue from falling posteriorly. A two-person ventilation approach may be needed, one for jaw positioning and mask seal and the other for ventilation.15 A 3–5 minute period of ventilation is used to increase oxyhemoglobin saturation and reduce the rate of desaturation, prior to intubation.
A variety of methods are available to maintain ventilation in a difficult airway (Table 14.1). The simplest approach is to insert a long nasopharyngeal airway that extends inferior to the base of tongue. A laryngeal mask airway (LMA) is another excellent way to stabilize the airway and allow ventilation.16,17 The LMA is inserted blindly, and keeps the base of tongue and epiglottis from collapsing posteriorly. Other options require additional equipment and expertise such as use of a rigid ventilating bronchoscope, an esophageal–tracheal combitube, or the placement of a 14 gauge angiocath into the cricothyroid membrane followed by transtracheal jet ventilation.
Oral airway |
Long nasopharyngeal airways |
Laryngeal mask airway |
Esophageal–tracheal combitube |
Rigid ventilating bronchoscope |
Intratracheal jet stylet |
Transtracheal jet ventilation |