Chapter 33 Intellectual Disability
Definition
The IDEA requires that the cognitive dysfunction affect school performance.
The requirement for adaptive behavior deficits is the most controversial aspect of the diagnostic formulation. The controversy centers on 2 broad areas: whether impairments in adaptive behavior are necessary for the construct of intellectual disability and what to measure. The adaptive behavior criterion may be irrelevant for many children; adaptive behavior is impaired in virtually all children who have IQ scores <50. The major utility of the adaptive behavior criterion is to confirm intellectual disability in children with IQ scores in the 65-75 range. It should be noted that deficits in adaptive behavior are often found in disorders such as Asperger syndrome (Chapter 28) and ADHD (Chapter 30) in the presence of typical intellectual function.
The most commonly used medical diagnostic criteria for intellectual disability are those contained in the DSM-IV-TR (Table 33-1). The classification of intellectual disability that results from these definitions has been criticized for depending on IQ test performance rather than adaptive behavior, not taking the standard error of measurement into account, and not being predictive of outcomes for individuals. A new edition is currently being prepared that might address these issues. The AAIDD has proposed a different classification system. Instead of defining degrees of deficit (mild to profound), the AAIDD definition substitutes levels of support required in areas of adaptive function (intermittent, limited, extensive, or pervasive). The reliability of this approach has been challenged, and it blurs the distinction between intellectual and other developmental disabilities (communication disorder, autism, specific learning disabilities).
Table 33-1 DIAGNOSTIC CRITERIA FOR INTELLECTUAL DISABILITY
Code based on degree of severity reflecting level of intellectual impairment:
From American Psychiatric Association: Diagnostic and statistical manual of mental disorders, fourth edition, text revision, Washington, DC, 2000, American Psychiatric Association, p 49, reprinted by permission.
Etiology
In children with severe intellectual disability, a biologic cause (most commonly prenatal) can be identified in >75% of cases. Causes include chromosomal (e.g., Down syndrome Wolf-Hirschhorn syndrome, deletion 1p36 syndrome) and other genetic and epigenetic disorders (e.g., fragile X syndrome, Rett syndrome, Angelman and Prader-Willi syndromes), abnormalities of brain development (e.g., lissencephaly), and inborn errors of metabolism or neurodegenerative disorders (e.g, mucopolysaccharidoses) (Table 33-2). Consistent with the finding that disorders that alter early embryogenesis are the most common and severe, the earlier the problem occurs in development, the more severe its consequences tend to be.
CAUSE | EXAMPLES | PERCENT OF TOTAL |
---|---|---|
Chromosomal disorder |
CMV, cytomegalovirus; HIE, hypoxic ischemic encephalopathy; HIV, human immunodeficiency virus; IVH, intraventricular hemorrhage; PKU, phenylketonuria; PVL, periventricular leukomalacia.
Modified from Stromme P, Hayberg G: Aetiology in severe and mild mental retardation: a population based study of Norwegian children, Dev Med Child Neurol 42:76–86, 2000.
Epidemiology
Unlike mild intellectual disability, where the prevalence may be decreasing, the occurrence of severe intellectual disability has not changed appreciably since the 1940s and is 0.3-0.5% of the population. Many of the causes of severe intellectual disability involve genetic or congenital brain malformations that can neither be anticipated nor treated at present. In addition, new populations with severe intellectual disability have offset the decreases in the prevalence of severe intellectual disability that have resulted from improved health care. Although prenatal diagnosis and subsequent pregnancy terminations have resulted in a decreased prevalence of Down syndrome (Chapter 76), and newborn screening with early treatment has virtually eliminated intellectual disability caused by phenylketonuria and congenital hypothyroidism, an increased prevalence of maternal prenatal drug use (Chapter 90.4) and improved survival of very low birthweight premature infants has counterbalanced this effect.
Pathology and Pathogenesis
The programming of the central nervous system (CNS) involves a process of induction; CNS maturation is defined in terms of genetic, molecular, autocrine, paracrine, and endocrine influences. Receptors, signaling molecules, and genes are critical to brain development. The maintenance of different neuronal phenotypes in the adult brain involves the same genetic transcripts that play a crucial role during fetal development, with activation of similar intracellular signal transduction mechanisms. Several syndromes that were thought to involve complex chromosomal abnormalities are, in fact, caused by single gene mutations involving induction. Rubinstein-Taybi syndrome (Chapter 76), a disorder marked clinically by broad thumbs and great toes, characteristic facies, and severe intellectual disability, has been shown to result from a mutation in the gene encoding for the transcriptional co-activator CREB binding protein (CBP), a factor important in the control of gene expression in early embryogenesis.