Case 24

Published on 03/03/2015 by admin

Filed under Neurology

Last modified 22/04/2025

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 0 (0 votes)

This article have been viewed 1087 times

Case 24

HISTORY AND PHYSICAL EXAMINATION

A 36-year-old white man awoke with binocular diplopia; later that day, he noted blurred vision and lid ptosis. The next morning, he had nausea and vomited twice, and then he had slurred speech and difficulty swallowing. He was admitted to the hospital where magnetic resonance imaging (MRI) of the brain and cerebral angiography were normal. By the third day, he had developed complete ophthalmoplegia, severe dysarthria and dysphagia, and upper extremity weakness. Respiratory failure followed; the patient had to be intubated and required assisted ventilation. The Tensilon test was equivocal.

On examination on day 4, the patient was alert and intubated, and followed commands well. He had bilateral complete ophthalmoplegia to all gaze directions with bilateral ptosis (Figure C24-1). Pupils were dilated and unreactive to light or attempted accommodation. Corneal reflexes were depressed. The patient had bilateral peripheral facial weakness. His tongue was extremely weak, with no fasciculations. His palate did not move volitionally or to gagging. Neck flexors and extensors were weak (Medical Research Council [MRC] 3/5), as were proximal pelvic and shoulder girdle muscles (4/5). However, distal muscles were normal. Deep tendon reflexes were depressed (1/4). Sensation was normal. Cerebellar function also was normal.

An electrodiagnostic (EDX) examination was requested.

Please now review the Nerve Conduction Studies and Needle EMG tables.

QUESTIONS

EDX FINDINGS AND INTERPRETATION OF DATA

The relevant EDX findings in this case are:

The EDX findings are consistent with a neuromuscular junction disorder of the presynaptic type, as supported by the borderline or low-amplitude baseline CMAPs, and the significant increment (>50%) of the CMAP amplitude after brief exercise and rapid repetitive stimulation of motor nerves. This case is consistent with botulism based on subacute progression of a descending muscle paralysis (ocular to bulbar to limbs), the muscarinic involvement (pupillary dilatation), and the EDX findings (presynaptic blockade). It is not consistent with Lambert-Eaton myasthenic syndrome because of the rapid evolution of symptoms, the prominent oculobulbar muscle weakness, and the relatively modest increment on rapid repetitive stimulation and after brief exercise (see electrodiagnosis).

DISCUSSION

Physiology and Pathophysiology

Botulinum toxin is produced by the anaerobic bacterium Clostridium botulinum. Eight immunologically distinct subtypes of the toxin have been identified (A, B, C1, C2, D, E, F, and G). Five serotypes are associated with human disease, with types A and B being the most common. Botulinum toxin type A is the most common in the United States, accounting for 60% of reported cases; it is the predominant type west of the Mississippi and is the most toxic of all subtypes. Type B serotype causes 30% of US cases and is the most common in Europe. It is the major type east of the Mississippi and tends to cause a milder illness.

Botulinum toxin is an extremely potent toxin with doses as small as 0.05 to 0.1 μg causing death in humans. The toxin has significant affinity to both muscarinic and nicotinic cholinergic nerve terminals resulting in autonomic failure and skeletal muscle paralysis. The toxin results in failure of ACH release from the presynaptic terminal and ultimately leads to destruction of the presynaptic terminal. Botulinum toxin first attaches irreversibly to the axonal terminal, and enters via endocytosis without interfering with the calcium channel (calcium entry is not blocked by botulinum toxin). The toxin then interferes with the calcium-dependent intracellular cascade that is responsible for ACH release, by cleaving proteins essential for docking and fusion of the presynaptic vesicles at the presynaptic active zones. Electron microscopy of nerve endings exposed to the toxin reveal a “log jam” of vesicles in the presynaptic terminals. It is now known that various serotypes bind to different presynaptic proteins: botulinum toxin A and E hydrolyze synaptosomal-associated protein-25 (SNAP-25), a protein of the presynaptic membrane; botulinum toxins B, D, F, and G specifically cleave synaptobrevin, a membrane protein of the neurotransmitter-containing vesicles; botulinum toxin C cleaves both SNAP-25 and syntaxin, a nerve plasmalemma protein (Figure C24-5). Because the ultimate result of this intoxication is interference with neurotransmitter release (exocytosis of synaptic vesicles) and destruction of the nerve terminals, recovery of neurologic function is protracted since it is dependent on the regrowth of sprouts from the injured nerve terminal.

Clinical Features

Botulism is a rare but serious and potentially fatal illness. The clinical picture and severity of botulism are variable since they are dependent on the type of toxin, the dose ingested, and the mode of entry. Although both skeletal muscle weakness and autonomic dysfunction occur in most cases, neuromuscular symptoms tend to overshadow type A intoxication, while dysautonomia dominates disease caused by types B and E. Depending on the mode of entry of the toxin into the bloodstream, botulism is classified into four clinically distinct forms.

1. Food-borne (classic) botulism. This is the most severe and debilitating form. It is caused by ingestion of food contaminated by the preformed toxin, which is then absorbed from the gut and distributed by the blood. Home canned foods (fish, vegetables, potatoes, garlic in oil, sautéed onions, etc.) are common vehicles for food-borne botulism. Factors that enhance spore germination and toxin production are low oxygen, low acidity, and high water content, while foods with high acid content, such as vinegar and tomato, are rarely associated with botulism. Classic botulism may manifest as an outbreak (such as restaurant-associated outbreaks), although two-thirds of reported cases have affected single individuals. Boiling food thoroughly should destroy the toxin.

The presentation of food-borne botulism is stereotypical. The onset of symptoms is within 2 to 36 hours after ingestion and their peak is at 4 to 5 days. Muscle weakness become often generalized and evolves in a distinctive way. Symptoms begin in the ocular and bulbar musculature with blurred vision, double vision, ptosis, dysarthria, and dysphagia. Weakness then descends, usually symmetrically, to involve muscles of the trunk and limbs, and in severe cases, the respiratory muscles. Proximal muscles are weaker than distal ones, and the upper extremities usually are more involved than lower ones. Autonomic manifestations include diarrhea, nausea, and vomiting early in the illness and later dry mouth, blurred vision, constipation, ileus, and urinary retention. Dilated, fixed, or poorly reactive pupils are common but may be delayed.

The diagnosis of botulism may be difficult and requires a high index of suspicion. Many cases go unrecognized and are diagnosed with various neuromuscular, medical, and even psychiatric diagnoses (Table C24-1). The diagnosis is relatively easy in epidemics, or if two or more cases are identified simultaneously. Botulism should be suspected when there is:

Table C24-1 Diagnosis of 31 Previously Unrecognized Canadian Patients With Botulism After the Identification of Two Teenaged Sisters With Type B Botulism*

Discharge Diagnosis Number of Patients
Myasthenia gravis 7
Psychiatric illness 4
Viral syndrome 4
Botulism 3
Stroke 3
Guillain-Barré syndrome 3
Inflammatory myopathy 2
Diabetic complications 1
Hyperemesis gravidarum 1
Hypothyroidism 1
Laryngeal trauma 1
Overexertion 1

* The outbreak was subsequently identified as spoiled commercial chopped garlic in soybean oil.

Includes hysteria, agitated depression, separation reaction, and factitious weakness.

All three patients were family members whose diagnosis represented the initial recognition of the outbreak.

Data from St. Louis ME et al. Botulism from chopped garlic: delayed recognition of a major outbreak. Ann Intern Med 1988;108:363–368.

The diagnosis of botulism is confirmed by:

Treatment of botulism should be initiated as soon as the diagnosis is suspected and confirmed by electrophysiologic findings. Specific treatment for botulism is limited, and therapy is primarily supportive.

The prognosis for botulism has been influenced by great advances in critical care and respiratory support. Mortality from botulism in the United States has declined from about 50% before 1950 to 7.5% between 1976 and 1984. Heightened awareness, better recognition, and earlier administration of antitoxin might have played a role in this dramatic improvement in outcome. Recovery of neurologic function is usually protracted because it is dependent on regeneration of new endplates, which may continue for as long as 5 years.

Electrodiagnosis

The EDX studies provide a rapid evidence of botulism awaiting the bioassay and stool cultures. The latter two tests may also be negative. The EDX findings in botulism are compatible with a presynaptic defect of the neuromuscular junction (see electrodiagnosis in Cases 17 and 21). The findings are as follows:

Table C24-2 Electrophysiological Differences Between Two Common Presynaptic Neuromuscular Disorders (Botulism and Lambert-Eaton Myasthenic Syndrome)

Electrophysiology Botulism Lambert-Eaton Myasthenic Syndrome
Baseline CMAPs Low in amplitudes, particularly in proximal and weak muscles Low in amplitudes in all muscles
CMAP increment Present in clinically affected muscles Present in all muscles
Degree of CMAP increment Moderate (30–100%) Marked (>200%)

Although the clinical presentations of LEMS and botulism are quite different, their EDX findings are similar, but with certain distinctions, since both are due to a presynaptic defect of ACH release (see Table C24-2).

FOLLOW-UP

After EDX confirmation, the patient’s family recalled that the patient had lunch with a friend at a local restaurant the day before the onset of symptoms. Both had a “homemade” soup. The friend became ill that night with severe nausea and vomiting, but subsequent neurologic symptoms did not develop.

The patient was given trivalent antitoxin within 24 hours of diagnosis. However, he continued to worsen over the ensuing days to complete paralysis of all voluntary muscles on days 5 to 7 (except for flicker movements of the hands and feet). Deep tendon reflexes became unelicited. On days 8 to 10, paralytic ileus developed, and the patient lost sphincteric control. Repeated EDX examinations showed a decline in baseline CMAP amplitudes. Bioassay of serum and stool cultures at the Centers for Disease Control (CDC) confirmed the diagnosis of botulism due to Clostridium botulinum type A.

Recovery was protracted. The patient was completely paralyzed, except for finger flickers, until day 15. Between days 15 and 30, he showed gradual improvement: strength returned, first in the distal muscles and then proximally. Later, he regained his ability to write and started communicating this way. Paralytic ileus resolved, but ventilation dependency was unchanged, with vital capacity ranging between 500 and 700 mL. Between months 2 and 3, his strength improved such that he could sit and feed himself. Extraocular movements returned gradually to full range. Pupils were still large but started reacting to light. Swallowing and speech improved gradually. During month 4, ventilation improved to allow extubation and then discharge for physical rehabilitation.

When the patient was seen 6 months after the onset of illness, he complained of easy fatigability and poor endurance. He had no appreciable muscle atrophy and minimal weakness of proximal and neck muscles (MRC 5-/5), and he had regained all deep tendon reflexes. Pupils were normal. The patient returned to work 1 month later. Examination 1 year later revealed no abnormality. Baseline CMAPs returned to normal, with absence of increment after rapid repetitive stimulation or postexercise facilitation (Figure C24-6).