Case 11

Published on 03/03/2015 by admin

Filed under Neurology

Last modified 22/04/2025

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 0 (0 votes)

This article have been viewed 1880 times

Case 11

HISTORY AND PHYSICAL EXAMINATION

A 30-year-old right-handed man developed neck and left parascapular pain over 2 weeks. Two days before presentation, his pain worsened and he had a radiating pain to the posterior aspect of the arm and numbness of the hand, particularly the index and middle fingers. He became aware of weakness of the left arm. His pain was exacerbated by coughing and neck movement. He denied any history of trauma. He had a history of left parascapular pain that occurred 2 years earlier, which responded to nonsteroidal anti-inflammatory agents. Otherwise, he had been in excellent health.

On examination, the range of neck movements was restricted in all directions. Lateral neck flexion to the left reproduced the left parascapular and arm pain. There was no atrophy or fasciculations. He had moderate weakness of the left triceps muscle (Medical Research Council [MRC] grade 4/5) and very mild weakness of the left wrist extensors (MRC grade 5–/5). All other muscles were normal. The left triceps reflex was trace. All other reflexes were 2/4. Sensory examination revealed no objective sensory impairment. Examination of the right upper and both lower extremities revealed no abnormalities.

Cervical spine x-rays showed reversal of the normal cervical lordosis with normal disk interspaces. Initially, the patient was treated conservatively with cervical traction, nonsteroidal anti-inflammatory agents, and analgesia. Ten days later, there was no improvement.

An electromyography (EMG) examination was then performed.

Please now review the Nerve Conduction Studies and Needle EMG tables.

DISCUSSION

Applied Anatomy

The dorsal root axons originate from the sensory neurons of the DRG, which lie outside the spinal canal, within the intervertebral foramen, immediately before the junction of the dorsal and ventral roots (Figure C11-1). These sensory neurons are unique because they are unipolar. They have proximal projections through the dorsal root, called the preganglionic sensory fibers, to the dorsal horn and column of the spinal cord. The distal projections of these neurons, called the postganglionic peripheral sensory fibers, pass through the spinal nerve to their respective sensory end-organs. The ventral root axons, however, are mainly motor (some are sympathetic, with origins from the anterolateral horn of the cord). The motor axons originate from the anterior horn cells within the spinal cord. Passing through the spinal nerves and the peripheral nerve, these motor fibers terminate in the corresponding muscles.

The spinal nerves terminate as soon as they exit the intervertebral foramina, by branching into posterior and anterior rami. The small posterior rami innervate the paravertebral skin and deep paraspinal muscles of the neck, trunk, and back; the large anterior rami innervate the skin and muscles of the trunk and limbs.

In humans, there are 31 pairs of spinal nerve roots: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. In the cervical spine, each cervical root exits above the corresponding vertebra that shares the same numeric designation (Figure C11-2). For example, the C5 root exits above the C5 vertebra (i.e., between the C4 and C5 vertebrae). Because there are seven cervical vertebrae but eight cervical roots, the C8 root exits between the C7 and T1 vertebrae; subsequently, all thoracic, lumbar, and sacral roots exit below their corresponding vertebrae. For example, the L3 root exits below the L3 vertebra (i.e., between the L3 and L4 vertebrae).

Clinical Features

Cervical radiculopathy frequently is the result of a herniated intervertebral disc, or osteophytic spondylitic changes that result in mechanical compression of the cervical root. The symptoms may be acute, subacute, or chronic. Neck pain radiating to the parascapular area and upper extremity, made worse by certain neck positions, is common. The pain radiation tends to follow the dermatomal innervation of the compressed root. Subjective paresthesias within the involved dermatome is more common than objective sensory findings. The diminution of deep tendon reflexes helps in localizing the lesion to one or two roots. Weakness is uncommon; when present, it involves muscles innervated by the compressed root.

The classic study by Yoss et al., published in 1957, remains the best available clinicoanatomic study of cervical root compression. This detailed study analyzed the symptoms and signs of 100 patients with surgically proven single cervical lesions. C7 radiculopathy was the most common cervical radiculopathy, accounting for almost two thirds of patients (Figure C11-3). Figure C11-4 shows the common sensory symptoms and signs observed in these patients, while Figure C11-5 shows the weakened muscles caused by cervical radiculopathy. This study revealed the extreme variability of sensory manifestations in patients with cervical radiculopathy. Also, no single muscle was exclusively diagnostic of a specific root compression. However, based on the data, certain clinical conclusions can be made:

image

Figure C11-3 Incidence of cervical root involvement in a series of 100 patients with surgically proven single-level lesions.

(Data adapted from Yoss RE et al. Significance of symptoms and signs in localization of involved root in cervical disc protrusion. Neurology 1957;7:673–683, with permission.)

image

Figure C11-4 Sensory manifestation in patients with established single cervical root lesions (C5–C8). (A) patterns of paresthesias in 91 patients and (B) objective sensory impairment in 23 of the same patients.

(From Yoss RE et al. Significance of symptoms and signs in localization of involved root in cervical disc protrusion. Neurology 1957;7:673–683, with permission.)

image

Figure C11-5 Incidence and severity of weakness of muscles or groups of muscles in cervical radiculopathy (C5–C8).

Rights were not granted to include this figure in electronic media. Please refer to the printed book.

(From Yoss RE et al. Significance of symptoms and signs in localization of involved root in cervical disc protrusion. Neurology 1957;7:673–683, with permission.)

However, despite the variability in sensory and motor presentations of cervical radiculopathies, certain classical symptoms and signs exist and are extremely helpful in localizing the compressed root. Table C11-1 reveals the common presentations of cervical radiculopathies.

Electrodiagnosis

General Concepts

Certain general concepts are essential to appreciate before one makes a diagnosis of a cervical radiculopathy in the EMG laboratory.

7. F waves are rarely abnormal in radiculopathy. Despite early enthusiasm about the utility of F waves, which test the integrity of the entire motor axon including the ventral roots, the F waves are not sensitive in the diagnosis of cervical radiculopathies for the following reasons:

Goals of the Electrodiagnostic Study

The EDX examination plays a pivotal role in the diagnosis, and sometimes the management, of cervical radiculopathy. The diagnostic aims of the EDX examination in radiculopathy are to:

Exclude a More Distal Nerve Lesion

Differentiating a mononeuropathy from radiculopathy is relatively easy when the focal peripheral nerve lesion is associated with conduction block or focal slowing, such as in carpal tunnel syndrome or ulnar mononeuropathy at the elbow. Also, in mononeuropathy, fibrillation potentials and MUAP reinnervation changes are limited to muscles innervated by the involved peripheral nerve. However, these abnormalities in radiculopathy are more widespread and involve muscles that share the same root innervation, regardless of their peripheral nerve.

Differentiating a brachial plexus lesion from cervical radiculopathy involves mostly evaluating the SNAPs and needle EMG of the cervical paraspinal muscles as well as very proximal muscles.

Confirm Evidence of Root Compression

Two criteria are necessary to establish the diagnosis of cervical radiculopathy.

Table C11-2 Upper Extremity Sensory Nerve Action Potentials (SNAPs) and Their Segmental Representation

Root SNAP
C6 Lateral antebrachial (Lateral cutaneous of forearm)
Median recording thumb
Median recording index
Radial recording dorsum of hand
C7 Median recording index
Median recording middle finger
Radial recording dorsum of hand
C8 Ulnar recording little finger
Medial antebrachial (Medial cutaneous of forearm)
T1 Medial brachial (Medial cutaneous of arm)

Localize the Compression to One or Multiple Roots

This requires meticulous knowledge of the segmental innervation of both limb muscles (myotomes) and skin (dermatomes). Many myotomal charts have been devised, with significant variability; this may lead to confusion and disagreement between the needle EMG and the level of root compression as seen by imaging techniques or during surgery. EMG-derived charts are also helpful and have had anatomic confirmation (see Levin et al. and Katirji et al.). Figure C11-6 reveals a common and most useful EMG-extracted myotomal chart.

A minimal “root search” should be performed in all patients with suspected cervical radiculopathy to ensure that a radiculopathy is either confirmed or excluded. In other words, certain muscles of strategic value in EMG because of their segmental innervation should be sampled (Table C11-3). When abnormalities are found or when the clinical manifestations suggest a specific root compression, more muscles must be sampled after being selected based on their innervation (see Figure C11-6), to verify the diagnosis and establish the exact compressed root(s).

Table C11-3 Suggested Muscles to be Sampled in Patients With Suspected Cervical Radiculopathy*

First dorsal interosseous C8, T1
Flexor pollicis longus C8, T1
Pronator teres C6, C7
Biceps C5, C6
Triceps C6, C7, C8
Deltoid C5, C6
Mid-cervical paraspinal C5, C6
Low-cervical paraspinal C7, C8

* Roots in bold type represent the major innervation.

Once myotomal denervation is detected by needle EMG, it is essential to confirm that the lesion is preganglionic (i.e., within the spinal canal) and not postganglionic (i.e., due to a brachial plexus injury). This can be achieved by recording one or more SNAPs appropriate for the myotome involved, and then establishing normality of SNAPs. For example, in a suspected C6 radiculopathy, the antidromic (or orthodromic) median SNAPs, recording the thumb and index, should be performed, preferably bilaterally for comparison (see Table C11-2).

Define the Age and Activity of the Radiculopathy

Changes seen on needle EMG help to determine the age of the lesion in an axon-loss cervical radiculopathy. As with many processes wherein motor axon loss occurs, increased insertional activity is the first abnormality seen and, when isolated, suggests that the process may be only 1–2 weeks old. Fibrillation potentials, which are spontaneous action potentials generated by denervated muscle fibers, develop soon after and become full after 3 weeks from acute motor axonal loss. These potentials often appear first in the cervical paraspinal muscles, then in proximal muscles, and lastly in distal muscles. They also disappear after reinnervation or following muscle fiber fatty degeneration. As time elapses, collateral sprouting from intact axons results in MUAPs with polyphasia and satellites potentials. These MUAPs, usually seen after 2 to 3 months from acute injury, are often unstable by showing moment-to-moment variation in morphology. With further time, MUAPs with high amplitude and long duration dominate, reflecting a more complete reinnervation and the chronicity of the root compression.

In assessing a patient with possible cervical radiculopathy, it is often important to comment on whether the root compression is chronic or ongoing (active). This is easy when one encounters large and stable MUAPs, reflecting chronicity, along with fibrillation potentials, reflecting ongoing (active) denervation. In contrast, when fibrillation potentials are absent, it is presumed that the findings are chronic and remote, such as in patients with a prior history of a severe cervical radiculopathy. This simplistic differentiation has, however, several limitations:

Define the Severity of the Radiculopathy

In assessing the severity of a radiculopathy, one erroneously tends to rely on the degree of abnormalities seen on needle EMG, namely decreased recruitment (“neurogenic” MUAP firing pattern), fibrillation potentials, and MUAP configuration. Using these parameters in assessing severity of lesion (i.e., extent of axon loss) is suboptimal for the following caveats:

The best indicator of motor axon loss is the CMAP amplitude (or area) recorded during routine motor nerve conduction studies of the upper extremity. Although these studies are performed distally and do not include the roots, a root lesion causing demyelinative conduction block (or focal slowing), with little or no accompanying axonal degeneration, may result in weakness, but does not lead to any decrease in CMAP amplitude or other abnormalities on motor conduction studies. Only when significant axonal loss occurs at the root level does the CMAP recording from an involved muscle become low in amplitude (or occasionally absent when multiple adjacent roots are compressed). In acute lesions, this is only detected when sufficient time has elapsed for wallerian degeneration to occur (usually 7–10 days). For example, only in moderate or severe C8 radiculopathy is the ulnar CMAP, recording from abductor digiti minimi (C8, T1), borderline or low in amplitude at least after 10 days from onset of acute symptoms.

Electrodiagnostic Findings in Cervical Radiculopathies

The EMG findings in isolated cervical radiculopathy are dependent on the myotomal innervation of the upper limb. It should be emphasized that multiple cervical radiculopathies are not uncommon, especially in elderly people with cervical spondylosis. Spondylosis can frequently result in compression of more than one root, usually but not necessarily adjacent to each other. A contralateral root may also be affected frequently, although this occurs more often in lumbosacral radiculopathies.

C5/C6 Radiculopathies

It is difficult, both clinically and by EMG, to separate lesions of C5 roots from those of C6 roots because of the significant overlap of their corresponding myotomes. Muscles that share both C5 and C6 segmental innervation, with about equal frequency, include the supraspinatus, infraspinatus, deltoid, biceps, and brachioradialis. However, the following muscles can help, when involved, to distinguish lesions of these roots:

Although the identification of denervation in the pronator teres/flexor carpi radialis or rhomboid muscles is beneficial in localizing the compressed root to C6 or C5 roots respectively, the lack of these findings does not exclude compression of the neighboring root because it is not necessary for all muscles innervated by the compressed root to reveal evidence of denervation.

Differentiating C5 or C6 radiculopathy from upper trunk brachial plexopathy is also sometimes difficult because the C5 dermatome has no clearly defined SNAP. Thus, in isolated C5 radiculopathy, finding fibrillation potentials in the cervical paraspinal muscles and/or in the rhomboid major is practically the only way to confirm a root lesion and rule out an upper plexus lesion. In C6 radiculopathy, however, the additional findings of normal median SNAPs, recording thumb (C6) and index (C6, C7), and of a lateral antebrachial cutaneous SNAP (C6) are supportive findings against an upper trunk or lateral cord lesion.

Could an EMG be Normal in a Patient With Definite Cervical Radiculopathy?

This is a question commonly asked by clinicians and reflects the limitations of the EDX test in the evaluation of cervical radiculopathy. The general rule is “a normal EMG does not exclude a root compression.” An EMG study may be normal in a cervical radiculopathy in the following circumstances: