Back

Published on 17/03/2015 by admin

Filed under Basic Science

Last modified 22/04/2025

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 4.5 (2 votes)

This article have been viewed 18623 times

Back

Conceptual overview

General description

The back consists of the posterior aspect of the body and provides the musculoskeletal axis of support for the trunk. Bony elements consist mainly of the vertebrae, although proximal elements of the ribs, superior aspects of the pelvic bones, and posterior basal regions of the skull contribute to the back’s skeletal framework (Fig. 2.1).

Associated muscles interconnect the vertebrae and ribs with each other and with the pelvis and skull. The back contains the spinal cord and proximal parts of the spinal nerves, which send and receive information to and from most of the body.

Functions

Support

The skeletal and muscular elements of the back support the body’s weight, transmit forces through the pelvis to the lower limbs, carry and position the head, and brace and help maneuver the upper limbs. The vertebral column is positioned posteriorly in the body at the midline. When viewed laterally, it has a number of curvatures (Fig. 2.2):

As stresses on the back increase from the cervical to lumbar regions, lower back problems are common.

Movement

Muscles of the back consist of extrinsic and intrinsic groups:

Although the amount of movement between any two vertebrae is limited, the effects between vertebrae are additive along the length of the vertebral column. Also, freedom of movement and extension are limited in the thoracic region relative to the lumbar part of the vertebral column. Muscles in more anterior regions flex the vertebral column.

In the cervical region, the first two vertebrae and associated muscles are specifically modified to support and position the head. The head flexes and extends, in the nodding motion, on vertebra CI, and rotation of the head occurs as vertebra CI moves on vertebra CII (Fig. 2.3).

Protection of the nervous system

The vertebral column and associated soft tissues of the back contain the spinal cord and proximal parts of the spinal nerves (Fig. 2.4). The more distal parts of the spinal nerves pass into all other regions of the body, including certain regions of the head.

Component parts

Bones

The major bones of the back are the 33 vertebrae (Fig. 2.5). The number and specific characteristics of the vertebrae vary depending on the body region with which they are associated. There are seven cervical, twelve thoracic, five lumbar, five sacral, and three to four coccygeal vertebrae. The sacral vertebrae fuse into a single bony element, the sacrum. The coccygeal vertebrae are rudimentary in structure, vary in number from three to four, and often fuse into a single coccyx.

Typical vertebra

A typical vertebra consists of a vertebral body and a vertebral arch (Fig. 2.6).

The vertebral body is anterior and is the major weightbearing component of the bone. It increases in size from vertebra CII to vertebra LV. Fibrocartilaginous intervertebral discs separate the vertebral bodies of adjacent vertebrae.

The vertebral arch is firmly anchored to the posterior surface of the vertebral body by two pedicles, which form the lateral pillars of the vertebral arch. The roof of the vertebral arch is formed by right and left laminae, which fuse at the midline.

The vertebral arches of the vertebrae are aligned to form the lateral and posterior walls of the vertebral canal, which extends from the first cervical vertebra (CI) to the last sacral vertebra (vertebra SV). This bony canal contains the spinal cord and its protective membranes, together with blood vessels, connective tissue, fat, and proximal parts of spinal nerves.

The vertebral arch of a typical vertebra has a number of characteristic projections, which serve as:

A spinous process projects posteriorly and generally inferiorly from the roof of the vertebral arch.

On each side of the vertebral arch, a transverse process extends laterally from the region where a lamina meets a pedicle. From the same region, a superior articular process and an inferior articular process articulate with similar processes on adjacent vertebrae.

Each vertebra also contains rib elements. In the thorax, these costal elements are large and form ribs, which articulate with the vertebral bodies and transverse processes. In all other regions, these rib elements are small and are incorporated into the transverse processes. Occasionally, they develop into ribs in regions other than the thorax, usually in the lower cervical and upper lumbar regions.

Vertebral canal

The spinal cord lies within a bony canal formed by adjacent vertebrae and soft tissue elements (the vertebral canal) (Fig. 2.8):

Within the vertebral canal, the spinal cord is surrounded by a series of three connective tissue membranes (the meninges):

In the vertebral canal, the dura mater is separated from surrounding bone by an extradural (epidural) space containing loose connective tissue, fat, and a venous plexus.

Spinal nerves

The 31 pairs of spinal nerves are segmental in distribution and emerge from the vertebral canal between the pedicles of adjacent vertebrae. There are eight pairs of cervical nerves (C1 to C8), twelve thoracic (T1 to T12), five lumbar (L1 to L5), five sacral (S1 to S5), and one coccygeal (Co). Each nerve is attached to the spinal cord by a posterior root and an anterior root (Fig. 2.9).

After exiting the vertebral canal, each spinal nerve branches into:

The anterior rami form the major somatic plexuses (cervical, brachial, lumbar, and sacral) of the body. Major visceral components of the PNS (sympathetic trunk and prevertebral plexus) of the body are also associated mainly with the anterior rami of spinal nerves.

Relationship to other regions

Head

Cervical regions of the back constitute the skeletal and much of the muscular framework of the neck, which in turn supports and moves the head (Fig. 2.10).

The brain and cranial meninges are continuous with the spinal cord meninges at the foramen magnum of the skull. The paired vertebral arteries ascend, one on each side, through foramina in the transverse processes of cervical vertebrae and pass through the foramen magnum to participate, with the internal carotid arteries, in supplying blood to the brain.

Thorax, abdomen, and pelvis

The different regions of the vertebral column contribute to the skeletal framework of the thorax, abdomen, and pelvis (Fig. 2.10). In addition to providing support for each of these parts of the body, the vertebrae provide attachments for muscles and fascia, and articulation sites for other bones. The anterior rami of spinal nerves associated with the thorax, abdomen, and pelvis pass into these parts of the body from the back.

Key features

Long vertebral column and short spinal cord

During development, the vertebral column grows much faster than the spinal cord. As a result, the spinal cord does not extend the entire length of the vertebral canal (Fig. 2.11).

In the adult, the spinal cord typically ends between vertebrae LI and LII, although it can end as high as vertebra TXII and as low as the disc between vertebrae LII and LIII.

Spinal nerves originate from the spinal cord at increasingly oblique angles from vertebrae CI to Co, and the nerve roots pass in the vertebral canal for increasingly longer distances. Their spinal cord level of origin therefore becomes increasingly dissociated from their vertebral column level of exit. This is particularly evident for lumbar and sacral spinal nerves.

Intervertebral foramina and spinal nerves

Each spinal nerve exits the vertebral canal laterally through an intervertebral foramen (Fig. 2.12). The foramen is formed between adjacent vertebral arches and is closely related to intervertebral joints:

Any pathology that occludes or reduces the size of an intervertebral foramen, such as bone loss, herniation of the intervertebral disc, or dislocation of the zygapophysial joint (the joint between the articular processes), can affect the function of the associated spinal nerve.

Regional anatomy

Skeletal framework

Skeletal components of the back consist mainly of the vertebrae and associated intervertebral discs. The skull, scapulae, pelvic bones, and ribs also contribute to the bony framework of the back and provide sites for muscle attachment.

Vertebrae

There are approximately 33 vertebrae, which are subdivided into five groups based on morphology and location (Fig. 2.14):

image The seven cervical vertebrae between the thorax and skull are characterized mainly by their small size and the presence of a foramen in each transverse process (Figs. 2.14 and 2.15).

image The 12 thoracic vertebrae are characterized by their articulated ribs (Figs. 2.14 and 2.16); although all vertebrae have rib elements, these elements are small and are incorporated into the transverse processes in regions other than the thorax; but in the thorax, the ribs are separate bones and articulate via synovial joints with the vertebral bodies and transverse processes of the associated vertebrae.

image Inferior to the thoracic vertebrae are five lumbar vertebrae, which form the skeletal support for the posterior abdominal wall and are characterized by their large size (Figs. 2.14 and 2.17).

image Next are five sacral vertebrae fused into one single bone called the sacrum, which articulates on each side with a pelvic bone and is a component of the pelvic wall.

image Inferior to the sacrum is a variable number, usually four, of coccygeal vertebrae, which fuse into a single small triangular bone called the coccyx.

In the embryo, the vertebrae are formed intersegmentally from cells called sclerotomes, which originate from adjacent somites (Fig. 2.18). Each vertebra is derived from the cranial parts of the two somites below, one on each side, and the caudal parts of the two somites above. The spinal nerves develop segmentally and pass between the forming vertebrae.

Typical vertebra

A typical vertebra consists of a vertebral body and a posterior vertebral arch (Fig. 2.19). Extending from the vertebral arch are a number of processes for muscle attachment and articulation with adjacent bone.

The vertebral body is the weight-bearing part of the vertebra and is linked to adjacent vertebral bodies by intervertebral discs and ligaments. The size of vertebral bodies increases inferiorly as the amount of weight supported increases.

The vertebral arch forms the lateral and posterior parts of the vertebral foramen.

The vertebral foramina of all the vertebrae together form the vertebral canal, which contains and protects the spinal cord. Superiorly, the vertebral canal is continuous, through the foramen magnum of the skull, with the cranial cavity of the head.

The vertebral arch of each vertebra consists of pedicles and laminae (Fig. 2.19):

A spinous process projects posteriorly and inferiorly from the junction of the two laminae and is a site for muscle and ligament attachment.

A transverse process extends posterolaterally from the junction of the pedicle and lamina on each side and is a site for articulation with ribs in the thoracic region.

Also projecting from the region where the pedicles join the laminae are superior and inferior articular processes (Fig. 2.19), which articulate with the inferior and superior articular processes, respectively, of adjacent vertebrae.

Between the vertebral body and the origin of the articular processes, each pedicle is notched on its superior and inferior surfaces. These superior and inferior vertebral notches participate in forming intervertebral foramina.

Cervical vertebrae

The seven cervical vertebrae are characterized by their small size and by the presence of a foramen in each transverse process. A typical cervical vertebra has the following features (Fig. 2.20A):

The first and second cervical vertebrae—the atlas and axis—are specialized to accommodate movement of the head.

Atlas and axis

Vertebra CI (the atlas) articulates with the head (Fig. 2.21). Its major distinguishing feature is that it lacks a vertebral body (Fig. 2.20B). In fact, the vertebral body of CI fuses onto the body of CII during development to become the dens of CII. As a result, there is no intervertebral disc between CI and CII. When viewed from above, the atlas is ring shaped and composed of two lateral masses interconnected by an anterior arch and a posterior arch.

Each lateral mass articulates above with an occipital condyle of the skull and below with the superior articular process of vertebra CII (the axis). The superior articular surfaces are bean shaped and concave, whereas the inferior articular surfaces are almost circular and flat.

The atlanto-occipital joint allows the head to nod up and down on the vertebral column.

The posterior surface of the anterior arch has an articular facet for the dens, which projects superiorly from the vertebral body of the axis. The dens is held in position by a strong transverse ligament of atlas posterior to it and spanning the distance between the oval attachment facets on the medial surfaces of the lateral masses of the atlas.

The dens acts as a pivot that allows the atlas and attached head to rotate on the axis, side to side.

The transverse processes of the atlas are large and protrude further laterally than those of the other cervical vertebrae and act as levers for muscle action, particularly for muscles that move the head at the atlanto-axial joints.

The axis is characterized by the large tooth-like dens, which extends superiorly from the vertebral body (Figs. 2.20B and 2.21). The anterior surface of the dens has an oval facet for articulation with the anterior arch of the atlas.

The two superolateral surfaces of the dens possess circular impressions that serve as attachment sites for strong alar ligaments, one on each side, which connect the dens to the medial surfaces of the occipital condyles. These alar ligaments check excessive rotation of the head and atlas relative to the axis.

Lumbar vertebrae

The five lumbar vertebrae are distinguished from vertebrae in other regions by their large size (Fig. 2.20D). Also, they lack facets for articulation with ribs. The transverse processes are generally thin and long, with the exception of those on vertebra LV, which are massive and somewhat cone shaped for the attachment of iliolumbar ligaments to connect the transverse processes to the pelvic bones.

The vertebral body of a typical lumbar vertebra is cylindrical and the vertebral foramen is triangular in shape and larger than in the thoracic vertebrae.

Sacrum

The sacrum is a single bone that represents the five fused sacral vertebrae (Fig. 2.20E). It is triangular in shape with the apex pointed inferiorly, and is curved so that it has a concave anterior surface and a correspondingly convex posterior surface. It articulates above with vertebra LV and below with the coccyx. It has two large L-shaped facets, one on each lateral surface, for articulation with the pelvic bones.

The posterior surface of the sacrum has four pairs of posterior sacral foramina, and the anterior surface has four pairs of anterior sacral foramina for the passage of the posterior and anterior rami, respectively, of S1 to S4 spinal nerves.

The posterior wall of the vertebral canal may be incomplete near the inferior end of the sacrum.

Coccyx

The coccyx is a small triangular bone that articulates with the inferior end of the sacrum and represents three to four fused coccygeal vertebrae (Fig. 2.20F). It is characterized by its small size and by the absence of vertebral arches and therefore a vertebral canal.

Intervertebral foramina

Intervertebral foramina are formed on each side between adjacent parts of vertebrae and associated intervertebral discs (Fig. 2.22). The foramina allow structures, such as spinal nerves and blood vessels, to pass in and out of the vertebral canal.

An intervertebral foramen is formed by the inferior vertebral notch on the pedicle of the vertebra above and the superior vertebral notch on the pedicle of the vertebra below. The foramen is bordered:

Each intervertebral foramen is a confined space surrounded by bone and ligament, and by joints. Pathology in any of these structures, and in the surrounding muscles, can affect structures within the foramen.

Posterior spaces between vertebral arches

In most regions of the vertebral column, the laminae and spinous processes of adjacent vertebrae overlap to form a reasonably complete bony dorsal wall for the vertebral canal. However, in the lumbar region, large gaps exist between the posterior components of adjacent vertebral arches (Fig. 2.23). These gaps between adjacent laminae and spinous processes become increasingly wide from vertebra LI to vertebra LV. The spaces can be widened further by flexion of the vertebral column. These gaps allow relatively easy access to the vertebral canal for clinical procedures.

Joints

Joints between vertebrae in the back

The two major types of joints between vertebrae are:

A typical vertebra has a total of six joints with adjacent vertebrae: four synovial joints (two above and two below) and two symphyses (one above and one below). Each symphysis includes an intervertebral disc.

Although the movement between any two vertebrae is limited, the summation of movement among all vertebrae results in a large range of movement by the vertebral column.

Movements by the vertebral column include flexion, extension, lateral flexion, rotation, and circumduction.

Movements by vertebrae in a specific region (cervical, thoracic, and lumbar) are determined by the shape and orientation of joint surfaces on the articular processes and on the vertebral bodies.

Symphyses between vertebral bodies (intervertebral discs)

The symphysis between adjacent vertebral bodies is formed by a layer of hyaline cartilage on each vertebral body and an intervertebral disc, which lies between the layers.

The intervertebral disc consists of an outer anulus fibrosus, which surrounds a central nucleus pulposus (Fig. 2.27).

Degenerative changes in the anulus fibrosus can lead to herniation of the nucleus pulposus. Posterolateral herniation can impinge on the roots of a spinal nerve in the intervertebral foramen.

“Uncovertebral” joints

The lateral margins of the upper surfaces of typical cervical vertebrae are elevated into crests or lips termed uncinate processes. These may articulate with the body of the vertebra above to form small “uncovertebral” synovial joints (Fig. 2.29).

Ligaments

Joints between vertebrae are reinforced and supported by numerous ligaments, which pass between vertebral bodies and interconnect components of the vertebral arches.

Anterior and posterior longitudinal ligaments

The anterior and posterior longitudinal ligaments are on the anterior and posterior surfaces of the vertebral bodies and extend along most of the vertebral column (Fig. 2.31).

The anterior longitudinal ligament is attached superiorly to the base of the skull and extends inferiorly to attach to the anterior surface of the sacrum. Along its length it is attached to the vertebral bodies and intervertebral discs.

The posterior longitudinal ligament is on the posterior surfaces of the vertebral bodies and lines the anterior surface of the vertebral canal. Like the anterior longitudinal ligament, it is attached along its length to the vertebral bodies and intervertebral discs. The upper part of the posterior longitudinal ligament that connects CII to the intracranial aspect of the base of the skull is termed the tectorial membrane (see Fig. 2.20B).

Ligamenta flava

The ligamenta flava, on each side, pass between the laminae of adjacent vertebrae (Fig. 2.32). These thin, broad ligaments consist predominantly of elastic tissue and form part of the posterior surface of the vertebral canal. Each ligamentum flavum runs between the posterior surface of the lamina on the vertebra below to the anterior surface of the lamina of the vertebra above. The ligamenta flava resist separation of the laminae in flexion and assist in extension back to the anatomical position.

Supraspinous ligament and ligamentum nuchae

The supraspinous ligament connects and passes along the tips of the vertebral spinous processes from vertebra CVII to the sacrum (Fig. 2.33). From vertebra CVII to the skull, the ligament becomes structurally distinct from more caudal parts of the ligament and is called the ligamentum nuchae.

The ligamentum nuchae is a triangular, sheet-like structure in the median sagittal plane:

The ligamentum nuchae supports the head. It resists flexion and facilitates returning the head to the anatomical position. The broad lateral surfaces and the posterior edge of the ligament provide attachment for adjacent muscles.

Interspinous ligaments

Interspinous ligaments pass between adjacent vertebral spinous processes (Fig. 2.34). They attach from the base to the apex of each spinous process and blend with the supraspinous ligament posteriorly and the ligamenta flava anteriorly on each side.

In the clinic

Vertebral fractures

Vertebral fractures can occur anywhere along the vertebral column. In most instances, the fracture will heal under appropriate circumstances. At the time of injury, it is not the fracture itself but related damage to the contents of the vertebral canal and the surrounding tissues that determines the severity of the patient’s condition.

Vertebral column stability is divided into three arbitrary clinical “columns”: the anterior column consists of the vertebral bodies and the anterior longitudinal ligament; the middle column comprises the vertebral body and the posterior longitudinal ligament; and the posterior column is made up of the ligamenta flava, interspinous ligaments, supraspinous ligaments, and the ligamentum nuchae in the cervical vertebral column.

Destruction of one of the clinical columns is usually a stable injury requiring little more than rest and appropriate analgesia. Disruption of two columns is highly likely to be unstable and requires fixation and immobilization. A three-column spinal injury usually results in a significant neurological event and requires fixation to prevent further extension of the neurological defect and to create vertebral column stability.

At the craniocervical junction, a complex series of ligaments create stability. If the traumatic incident disrupts craniocervical stability, the chances of a significant spinal cord injury are extremely high. The consequences are quadriplegia. In addition, respiratory function may be compromised by paralysis of the phrenic nerve (which arises from spinal nerves C3 to C5), and severe hypotension (low blood pressure) may result from central disruption of the sympathetic part of the autonomic division of the nervous system.

Mid and lower cervical vertebral column disruption may produce a range of complex neurological problems involving the upper and lower limbs, although below the level of C5, respiratory function is unlikely to be compromised.

Lumbar vertebral column injuries are rare. When they occur, they usually involve significant force. Knowing that a significant force is required to fracture a vertebra, one must assess the abdominal organs and the rest of the axial skeleton for further fractures and visceral rupture.

Vertebral injuries may also involve the soft tissues and supporting structures between the vertebrae. Typical examples of this are the unifacetal and bifacetal cervical vertebral dislocations that occur in hyperflexion injuries.

Pars interarticularis fractures

The pars interarticularis is a clinical term to describe the specific region of a vertebra between the superior and inferior facet (zygapophysial) joints (Fig. 2.35A). This region is susceptible to trauma, especially in athletes.

If a fracture occurs around the pars interarticularis, the vertebral body may slip anteriorly and compress the vertebral canal.

The most common sites for pars interarticularis fractures are the LIV and LV levels (Fig. 2.35B). (Clinicians often refer to parts of the back in shorthand terms that are not strictly anatomical; for example, facet joints and apophyseal joints are terms used instead of zygapophysial joints, and spinal column is used instead of vertebral column.)

It is possible for a vertebra to slip anteriorly upon its inferior counterpart without a pars interarticularis fracture. Usually this is related to abnormal anatomy of the facet joints, facet joint degenerative change. This disorder is termed spondylolisthesis.

In the clinic

Surgical procedures on the back

Discectomy/laminectomy

A prolapsed intervertebral disc may impinge upon the meningeal (thecal) sac, cord, and most commonly the nerve root, producing symptoms attributable to that level. In some instances the disc protrusion will undergo a degree of involution that may allow symptoms to resolve without intervention. In some instances pain, loss of function, and failure to resolve may require surgery to remove the disc protrusion.

It is of the utmost importance that the level of the disc protrusion is identified before surgery. This may require MRI scanning and on-table fluoroscopy to prevent operating on the wrong level. A midline approach to the right or to the left of the spinous processes will depend upon the most prominent site of the disc bulge. In some instances removal of the lamina will increase the potential space and may relieve symptoms. Some surgeons perform a small fenestration (windowing) within the ligamentum flavum. This provides access to the canal. The meningeal sac and its contents are gently retracted, exposing the nerve root and the offending disc. The disc is dissected free, removing its effect on the nerve root and the canal.

Back musculature

Muscles of the back are organized into superficial, intermediate, and deep groups.

Muscles in the superficial and intermediate groups are extrinsic muscles because they originate embryologically from locations other than the back. They are innervated by anterior rami of spinal nerves:

Muscles of the deep group are intrinsic muscles because they develop in the back. They are innervated by posterior rami of spinal nerves and are directly related to movements of the vertebral column and head.

Superficial group of back muscles

The muscles in the superficial group are immediately deep to the skin and superficial fascia (Figs. 2.36 to 2.39). They attach the superior part of the appendicular skeleton (clavicle, scapula, and humerus) to the axial skeleton (skull, ribs, and vertebral column). Because these muscles are primarily involved with movements of this part of the appendicular skeleton, they are sometimes referred to as the appendicular group.

Muscles in the superficial group include the trapezius, latissimus dorsi, rhomboid major, rhomboid minor, and levator scapulae. The rhomboid major, rhomboid minor, and levator scapulae muscles are located deep to the trapezius muscle in the superior part of the back.

Trapezius

Each trapezius muscle is flat and triangular, with the base of the triangle situated along the vertebral column (the muscle’s origin) and the apex pointing toward the tip of the shoulder (the muscle’s insertion) (Fig. 2.37 and Table 2.1). The muscles on both sides together form a trapezoid.

Table 2.1

Superficial (appendicular) group of back muscles

Muscle Origin Insertion Innervation Function
Trapezius Superior nuchal line, external occipital protuberance, ligamentum nuchae, spinous processes of CVII to TXII Lateral one third of clavicle, acromion, spine of scapula Motor—accessory nerve [XI]; proprioception—C3 and C4 Assists in rotating the scapula during abduction of humerus above horizontal; upper fibers elevate, middle fibers adduct, and lower fibers depress scapula
Latissimus dorsi Spinous processes of TVII to LV and sacrum, iliac crest, ribs X to XII Floor of intertubercular sulcus of humerus Thoracodorsal nerve (C6 to C8) Extends, adducts, and medially rotates humerus
Levator scapulae Transverse processes of CI to CIV Upper portion medial border of scapula C3 to C4 and dorsal scapular nerve (C4, C5) Elevates scapula
Rhomboid major Spinous processes of TII to TV Medial border of scapula between spine and inferior angle Dorsal scapular nerve (C4, C5) Retracts (adducts) and elevates scapula
Rhomboid minor Lower portion of ligamentum nuchae, spinous processes of CVII and TI Medial border of scapula at spine of scapula Dorsal scapular nerve (C4, C5) Retracts (adducts) and elevates scapula

image

The superior fibers of the trapezius, from the skull and upper portion of the vertebral column, descend to attach to the lateral third of the clavicle and to the acromion of the scapula. Contraction of these fibers elevates the scapula. In addition, the superior and inferior fibers work together to rotate the lateral aspect of the scapula upward, which needs to occur when raising the upper limb above the head.

Motor innervation of the trapezius is by the accessory nerve [XI], which descends from the neck onto the deep surface of the muscle (Fig. 2.38). Proprioceptive fibers from the trapezius pass in the branches of the cervical plexus and enter the spinal cord at spinal cord levels C3 and C4.

The blood supply to the trapezius is from the superficial branch of the transverse cervical artery, the acromial branch of the suprascapular artery, and the dorsal branches of posterior intercostal arteries.

Rhomboid minor and rhomboid major

The two rhomboid muscles are inferior to levator scapulae (Fig. 2.39 and Table 2.1). Rhomboid minor is superior to rhomboid major, and is a small, cylindrical muscle that arises from the ligamentum nuchae of the neck and the spinous processes of vertebrae CVII and TI and attaches to the medial scapular border opposite the root of the spine of the scapula.

The larger rhomboid major originates from the spinous processes of the upper thoracic vertebrae and attaches to the medial scapular border inferior to rhomboid minor.

The two rhomboid muscles work together to retract or pull the scapula toward the vertebral column. With other muscles they may also rotate the lateral aspect of the scapula inferiorly.

The dorsal scapular nerve, a branch of the brachial plexus, innervates both rhomboid muscles (Fig. 2.40).

Intermediate group of back muscles

The muscles in the intermediate group of back muscles consist of two thin muscular sheets in the superior and inferior regions of the back, immediately deep to the muscles in the superficial group (Fig. 2.41 and Table 2.2). Fibers from these two serratus posterior muscles (serratus posterior superior and serratus posterior inferior) pass obliquely outward from the vertebral column to attach to the ribs. This positioning suggests a respiratory function, and at times, these muscles have been referred to as the respiratory group.

Table 2.2

Intermediate (respiratory) group of back muscles

Muscle Origin Insertion Innervation Function
Serratus posterior superior Lower portion of ligamentum nuchae, spinous processes of CVII to TIII, and supraspinous ligaments Upper border of ribs II to V just lateral to their angles Anterior rami of upper thoracic nerves (T2 to T5) Elevates ribs II to V
Serratus posterior inferior Spinous processes of TXI to LIII and supraspinous ligaments Lower border of ribs IX to XII just lateral to their angles Anterior rami of lower thoracic nerves (T9 to T12) Depresses ribs IX to XII and may prevent lower ribs from being elevated when the diaphragm contracts

image

Serratus posterior superior is deep to the rhomboid muscles, whereas serratus posterior inferior is deep to the latissimus dorsi. Both serratus posterior muscles are attached to the vertebral column and associated structures medially, and either descend (the fibers of the serratus posterior superior) or ascend (the fibers of the serratus posterior inferior) to attach to the ribs. These two muscles therefore elevate and depress the ribs.

The serratus posterior muscles are innervated by segmental branches of anterior rami of intercostal nerves. Their vascular supply is provided by a similar segmental pattern through the intercostal arteries.

Deep group of back muscles

The deep or intrinsic muscles of the back extend from the pelvis to the skull and are innervated by segmental branches of the posterior rami of spinal nerves. They include:

The vascular supply to this deep group of muscles is through branches of the vertebral, deep cervical, occipital, transverse cervical, posterior intercostal, subcostal, lumbar, and lateral sacral arteries.

Thoracolumbar fascia

The thoracolumbar fascia covers the deep muscles of the back and trunk (Fig. 2.42). This fascial layer is critical to the overall organization and integrity of the region:

The medial attachments of the latissimus dorsi and serratus posterior inferior muscles blend into the thoracolumbar fascia. In the lumbar region, the thoracolumbar fascia consists of three layers:

The posterior and middle layers of the thoracolumbar fascia come together at the lateral margin of the erector spinae (Fig. 2.42). At the lateral border of the quadratus lumborum, the anterior layer joins them and forms the aponeurotic origin for the transversus abdominis muscle of the abdominal wall.

Spinotransversales muscles

The two spinotransversales muscles run from the spinous processes and ligamentum nuchae upward and laterally (Fig. 2.43 and Table 2.3):

Table 2.3

Spinotransversales muscles

Muscle Origin Insertion Innervation Function
Splenius capitis Lower half of ligamentum nuchae, spinous processes of CVII to TIV Mastoid process, skull below lateral one third of superior nuchal line Posterior rami of middle cervical nerves Together—draw head backward, extending neck; individually—draw and rotate head to one side (turn face to same side)
Splenius cervicis Spinous processes of TIII to TVI Transverse processes of CI to CIII Posterior rami of lower cervical nerves Together—extend neck; individually—draw and rotate head to one side (turn face to same side)

image

Together the spinotransversales muscles draw the head backward, extending the neck. Individually, each muscle rotates the head to one side—the same side as the contracting muscle.

Erector spinae muscles

The erector spinae is the largest group of intrinsic back muscles. The muscles lie posterolaterally to the vertebral column between the spinous processes medially and the angles of the ribs laterally. They are covered in the thoracic and lumbar regions by thoracolumbar fascia and the serratus posterior inferior, rhomboid, and splenius muscles. The mass arises from a broad, thick tendon attached to the sacrum, the spinous processes of the lumbar and lower thoracic vertebrae, and the iliac crest (Fig. 2.44 and Table 2.4). It divides in the upper lumbar region into three vertical columns of muscle, each of which is further subdivided regionally (lumborum, thoracis, cervicis, and capitis), depending on where the muscles attach superiorly.

Table 2.4

Erector spinae group of back muscles

Muscle Origin Insertion
Iliocostalis lumborum Sacrum, spinous processes of lumbar and lower two thoracic vertebrae and their supraspinous ligaments, and the iliac crest Angles of the lower six or seven ribs
Iliocostalis thoracis Angles of the lower six ribs Angles of the upper six ribs and the transverse process of CVII
Iliocostalis cervicis Angles of ribs III to VI Transverse processes of CIV to CVI
Longissimus thoracis Blends with iliocostalis in lumbar region and is attached to transverse processes of lumbar vertebrae Transverse processes of all thoracic vertebrae and just lateral to the tubercles of the lower nine or ten ribs
Longissimus cervicis Transverse processes of upper four or five thoracic vertebrae Transverse processes of CII to CVI
Longissimus capitis Transverse processes of upper four or five thoracic vertebrae and articular processes of lower three or four cervical vertebrae Posterior margin of the mastoid process
Spinalis thoracis Spinous processes of TX or TXI to LII Spinous processes of TI to TVIII (varies)
Spinalis cervicis Lower part of ligamentum nuchae and spinous process of CVII (sometimes TI to TII) Spinous process of CII (axis)
Spinalis capitis Usually blends with semispinalis capitis With semispinalis capitis

image The outer or most laterally placed column of the erector spinae muscles is the iliocostalis, which is associated with the costal elements and passes from the common tendon of origin to multiple insertions into the angles of the ribs and the transverse processes of the lower cervical vertebrae.

image The middle or intermediate column is the longissimus, which is the largest of the erector spinae subdivision extending from the common tendon of origin to the base of the skull. Throughout this vast expanse, the lateral positioning of the longissimus muscle is in the area of the transverse processes of the various vertebrae.

image The most medial muscle column is the spinalis, which is the smallest of the subdivisions and interconnects the spinous processes of adjacent vertebrae. The spinalis is most constant in the thoracic region and is generally absent in the cervical region. It is associated with a deeper muscle (the semispinalis capitis) as the erector spinae group approaches the skull.

The muscles in the erector spinae group are the primary extensors of the vertebral column and head. Acting bilaterally, they straighten the back, returning it to the upright position from a flexed position, and pull the head posteriorly. They also participate in controlling vertebral column flexion by contracting and relaxing in a coordinated fashion. Acting unilaterally, they bend the vertebral column laterally. In addition, unilateral contractions of muscles attached to the head turn the head to the actively contracting side.

Transversospinales muscles

The transversospinales muscles run obliquely upward and medially from transverse processes to spinous processes, filling the groove between these two vertebral projections (Fig. 2.45 and Table 2.5). They are deep to the erector spinae and consist of three major subgroups—the semispinalis, multifidus, and rotatores muscles.

Table 2.5

Transversospinales group of back muscles

Muscle Origin Insertion
Semispinalis thoracis Transverse processes of TVI to TX Spinous processes of upper four thoracic and lower two cervical vertebrae
Semispinalis cervicis Transverse processes of upper five or six thoracic vertebrae Spinous processes of CII (axis) to CV
Semispinalis capitis Transverse processes of TI to TVI (or TVII) and CVII and articular processes of CIV to CVI Medial area between the superior and inferior nuchal lines of occipital bone
Multifidus Sacrum, origin of erector spinae, posterior superior iliac spine, mammillary processes of lumbar vertebrae, transverse processes of thoracic vertebrae, and articular processes of lower four cervical vertebrae Base of spinous processes of all vertebrae from LV to CII (axis)
Rotatores lumborum Transverse processes of lumbar vertebrae Spinous processes of lumbar vertebrae
Rotatores thoracis Transverse processes of thoracic vertebrae Spinous processes of thoracic vertebrae
Rotatores cervicis Articular processes of cervical vertebrae Spinous processes of cervical vertebrae

image The semispinalis muscles are the most superficial collection of muscle fibers in the transversospinales group. These muscles begin in the lower thoracic region and end by attaching to the skull, crossing between four and six vertebrae from their point of origin to point of attachment. Semispinalis muscles are found in the thoracic and cervical regions, and attach to the occipital bone at the base of the skull.

image Deep to the semispinalis is the second group of muscles, the multifidus. Muscles in this group span the length of the vertebral column, passing from a lateral point of origin upward and medially to attach to spinous processes and spanning between two and four vertebrae. The multifidus muscles are present throughout the length of the vertebral column but are best developed in the lumbar region.

image The small rotatores muscles are the deepest of the transversospinales group. They are present throughout the length of the vertebral column but are best developed in the thoracic region. Their fibers pass upward and medially from transverse processes to spinous processes crossing two vertebrae (long rotators) or attaching to an adjacent vertebra (short rotators).

When muscles in the transversospinales group contract bilaterally, they extend the vertebral column, an action similar to that of the erector spinae group. However, when muscles on only one side contract, they pull the spinous processes toward the transverse processes on that side, causing the trunk to turn or rotate in the opposite direction.

One muscle in the transversospinales group, the semispinalis capitis, has a unique action because it attaches to the skull. Contracting bilaterally, this muscle pulls the head posteriorly, whereas unilateral contraction pulls the head posteriorly and turns it, causing the chin to move superiorly and turn toward the side of the contracting muscle. These actions are similar to those of the upper erector spinae.

Segmental muscles

The two groups of segmental muscles (Fig. 2.45 and Table 2.6) are deeply placed in the back and innervated by posterior rami of spinal nerves.

Table 2.6

Segmental back muscles

Muscle Origin Insertion Function
Levatores costarum Short paired muscles arising from transverse processes of CVII to TXI The rib below vertebra of origin near tubercle Contraction elevates rib
Interspinales Short paired muscles attached to the spinous processes of contiguous vertebrae, one on each side of the interspinous ligament   Postural muscles that stabilize adjoining vertebrae during movements of vertebral column
Intertransversarii Small muscles between the transverse processes of contiguous vertebrae   Postural muscles that stabilize adjoining vertebrae during movements of vertebral column

image

Suboccipital muscles

A small group of deep muscles in the upper cervical region at the base of the occipital bone move the head. They connect vertebra CI (the atlas) to vertebra CII (the axis) and connect both vertebrae to the base of the skull. Because of their location they are sometimes referred to as suboccipital muscles (Figs. 2.45 and 2.46 and Table 2.7). They include, on each side:

Table 2.7

Suboccipital group of back muscles

Muscle Origin Insertion Innervation Function
Rectus capitis posterior major Spinous process of axis (CII) Lateral portion of occipital bone below inferior nuchal line Posterior ramus of C1 Extension of head; rotation of face to same side as muscle
Rectus capitis posterior minor Posterior tubercle of atlas (CI) Medial portion of occipital bone below inferior nuchal line Posterior ramus of C1 Extension of head
Obliquus capitis superior Transverse process of atlas (CI) Occipital bone between superior and inferior nuchal lines Posterior ramus of C1 Extension of head and bends it to same side
Obliquus capitis inferior Spinous process of axis (CII) Transverse process of atlas (CI) Posterior ramus of C1 Rotation of face to same side

image

Contraction of the suboccipital muscles extends the head at the atlanto-axial joint.

The suboccipital muscles are innervated by the posterior ramus of the first cervical nerve, which enters the area between the vertebral artery and the posterior arch of the atlas (Fig. 2.46). The vascular supply to the muscles in this area is from branches of the vertebral and occipital arteries.

The suboccipital muscles form the boundaries of the suboccipital triangle, an area that contains several important structures (Fig. 2.46):

The contents of the area outlined by these muscles are the posterior ramus of C1, the vertebral artery, and associated veins.

Spinal cord

The spinal cord extends from the foramen magnum to approximately the level of the disc between vertebrae LI and LII in adults, although it can end as high as vertebra TXII or as low as the disc between vertebrae LII and LIII (Fig. 2.47). In neonates, the spinal cord extends approximately to vertebra LIII but can reach as low as vertebra LIV. The distal end of the cord (the conus medullaris) is cone shaped. A fine filament of connective tissue (the pial part of the filum terminale) continues inferiorly from the apex of the conus medullaris.

The spinal cord is not uniform in diameter along its length. It has two major swellings or enlargements in regions associated with the origin of spinal nerves that innervate the upper and lower limbs. A cervical enlargement occurs in the region associated with the origins of spinal nerves C5 to T1, which innervate the upper limbs. A lumbosacral enlargement occurs in the region associated with the origins of spinal nerves L1 to S3, which innervate the lower limbs.

The external surface of the spinal cord is marked by a number of fissures and sulci (Fig. 2.48):

Internally, the cord has a small central canal surrounded by gray and white matter:

Vasculature

Arteries

The arterial supply to the spinal cord comes from two sources (Fig. 2.49). It consists of:

After entering an intervertebral foramen, the segmental spinal arteries give rise to anterior and posterior radicular arteries (Fig. 2.49). This occurs at every vertebral level. The radicular arteries follow, and supply, the anterior and posterior roots. At various vertebral levels, the segmental spinal arteries also give off segmental medullary arteries (Fig. 2.49). These vessels pass directly to the longitudinally oriented vessels, reinforcing these.

The longitudinal vessels consist of:

The anterior and posterior spinal arteries are reinforced along their length by eight to ten segmental medullary arteries (Fig. 2.49). The largest of these is the arteria radicularis magna or the artery of Adamkiewicz (Fig. 2.49). This vessel arises in the lower thoracic or upper lumbar region, usually on the left side, and reinforces the arterial supply to the lower portion of the spinal cord, including the lumbar enlargement.

Meninges

Spinal dura mater

The spinal dura mater is the outermost meningeal membrane and is separated from the bones forming the vertebral canal by an extradural space (Fig. 2.51). Superiorly, it is continuous with the inner meningeal layer of cranial dura mater at the foramen magnum of the skull. Inferiorly, the dural sac dramatically narrows at the level of the lower border of vertebra SII and forms an investing sheath for the pial part of the filum terminale of the spinal cord. This terminal cord-like extension of dura mater (the dural part of the filum terminale) attaches to the posterior surface of the vertebral bodies of the coccyx.

As spinal nerves and their roots pass laterally, they are surrounded by tubular sleeves of dura mater, which merge with and become part of the outer covering (epineurium) of the nerves.

Arachnoid mater

The arachnoid mater is a thin delicate membrane against, but not adherent to, the deep surface of the dura mater (Fig. 2.51). It is separated from the pia mater by the subarachnoid space. The arachnoid mater ends at the level of vertebra SII (see Fig. 2.47).

Subarachnoid space

The subarachnoid space between the arachnoid and pia mater contains CSF (Fig. 2.51). The subarachnoid space around the spinal cord is continuous at the foramen magnum with the subarachnoid space surrounding the brain. Inferiorly, the subarachnoid space terminates at approximately the level of the lower border of vertebra SII (see Fig. 2.47).

Delicate strands of tissue (arachnoid trabeculae) are continuous with the arachnoid mater on one side and the pia mater on the other; they span the subarachnoid space and interconnect the two adjacent membranes. Large blood vessels are suspended in the subarachnoid space by similar strands of material, which expand over the vessels to form a continuous external coat.

The subarachnoid space extends further inferiorly than the spinal cord. The spinal cord ends at approximately the disc between vertebrae LI and LII, whereas the subarachnoid space extends to approximately the lower border of vertebra SII (see Fig. 2.47). The subarachnoid space is largest in the region inferior to the terminal end of the spinal cord, where it surrounds the cauda equina. As a consequence, CSF can be withdrawn from the subarachnoid space in the lower lumbar region without endangering the spinal cord.

Pia mater

The spinal pia mater is a vascular membrane that firmly adheres to the surface of the spinal cord (Fig. 2.51). It extends into the anterior median fissure and reflects as sleeve-like coatings onto posterior and anterior rootlets and roots as they cross the subarachnoid space. As the roots exit the space, the sleeve-like coatings reflect onto the arachnoid mater.

On each side of the spinal cord, a longitudinally oriented sheet of pia mater (the denticulate ligament) extends laterally from the cord toward the arachnoid and dura mater (Fig. 2.51).

The lateral attachments of the denticulate ligaments generally occur between the exit points of adjacent posterior and anterior rootlets. The ligaments function to position the spinal cord in the center of the subarachnoid space.

Arrangement of structures in the vertebral canal

The vertebral canal is bordered:

Between the walls of the vertebral canal and the dural sac is an extradural space containing a vertebral plexus of veins embedded in fatty connective tissue.

The vertebral spinous processes can be palpated through the skin in the midline in thoracic and lumbar regions of the back. Between the skin and spinous processes is a layer of superficial fascia. In lumbar regions, the adjacent spinous processes and the associated laminae on either side of the midline do not overlap, resulting in gaps between adjacent vertebral arches.

When carrying out a lumbar puncture (spinal tap), the needle passes between adjacent vertebral spinous processes, through the supraspinous and interspinous ligaments, and enters the extradural space. The needle continues through the dura and arachnoid mater and enters the subarachnoid space, which contains CSF.

In the clinic

Lumbar cerebrospinal fluid tap

A lumbar tap (puncture) is carried out to obtain a sample of CSF for examination. In addition, passage of a needle or conduit into the subarachnoid space (CSF space) is used to inject antibiotics, chemotherapeutic agents, and anesthetics.

The lumbar region is an ideal site to access the subarachnoid space because the spinal cord terminates around the level of the disc between vertebrae LI and LII in the adult. The subarachnoid space extends to the region of the lower border of the SII vertebra. There is therefore a large CSF-filled space containing lumbar and sacral nerve roots but no spinal cord.

Depending on the clinician’s preference, the patient is placed in the lateral or prone position. A needle is passed in the midline in between the spinous processes into the extradural space. Further advancement punctures the dura and arachnoid mater to enter the subarachnoid space. Most needles push the roots away from the tip without causing the patient any symptoms. Once the needle is in the subarachnoid space, fluid can be aspirated. In some situations, it is important to measure CSF pressure.

Local anesthetics can be injected into the extradural space or the subarachnoid space to anesthetize the sacral and lumbar nerve roots. Such anesthesia is useful for operations on the pelvis and the legs, which can then be carried out without the need for general anesthesia. When procedures are carried out, the patient must be in the erect position and not lying on his or her side or in the head-down position. If a patient lies on his or her side, the anesthesia is likely to be unilateral. If the patient is placed in the head-down position, the anesthetic can pass cranially and potentially depress respiration.

In some instances, anesthesiologists choose to carry out extradural anesthesia. A needle is placed through the skin, supraspinous ligament, interspinous ligament, and ligamenta flava into the areolar tissue and fat around the dura mater. Anesthetic agent is introduced and diffuses around the vertebral canal to anesthetize the exiting nerve roots and diffuse into the subarachnoid space.

Spinal nerves

Each spinal nerve is connected to the spinal cord by posterior and anterior roots (Fig. 2.53):

Medially, the posterior and anterior roots divide into rootlets, which attach to the spinal cord.

A spinal segment is the area of the spinal cord that gives rise to the posterior and anterior rootlets, which will form a single pair of spinal nerves. Laterally, the posterior and anterior roots on each side join to form a spinal nerve.

Each spinal nerve divides, as it emerges from an intervertebral foramen, into two major branches: a small posterior ramus and a much larger anterior ramus (Fig. 2.53):

Near the point of division into anterior and posterior rami, each spinal nerve gives rise to two to four small recurrent meningeal (sinuvertebral) nerves (see Fig. 2.51). These nerves reenter the intervertebral foramen to supply dura, ligaments, intervertebral discs, and blood vessels.

All major somatic plexuses (cervical, brachial, lumbar, and sacral) are formed by anterior rami.

Because the spinal cord is much shorter than the vertebral column, the roots of spinal nerves become longer and pass more obliquely from the cervical to coccygeal regions of the vertebral canal (Fig. 2.54).

In adults, the spinal cord terminates at a level approximately between vertebrae LI and LII, but this can range between vertebra TXII and the disc between vertebrae LII and LIII. Consequently, posterior and anterior roots forming spinal nerves emerging between vertebrae in the lower regions of the vertebral column are connected to the spinal cord at higher vertebral levels.

Below the end of the spinal cord, the posterior and anterior roots of lumbar, sacral, and coccygeal nerves pass inferiorly to reach their exit points from the vertebral canal. This terminal cluster of roots is the cauda equina.

Nomenclature of spinal nerves

There are approximately 31 pairs of spinal nerves (Fig. 2.54), named according to their position with respect to associated vertebrae:

The first cervical nerve (C1) emerges from the vertebral canal between the skull and vertebra CI (Fig. 2.55). Therefore cervical nerves C2 to C7 also emerge from the vertebral canal above their respective vertebrae. Because there are only seven cervical vertebrae, C8 emerges between vertebrae CVII and TI. As a consequence, all remaining spinal nerves, beginning with T1, emerge from the vertebral canal below their respective vertebrae.

In the clinic

Back pain—alternative explanations

Back pain is an extremely common condition affecting almost all individuals at some stage during their life. It is of key clinical importance to identify whether the back pain relates to the vertebral column and its attachments or relates to other structures.

The failure to consider other potential structures that may produce back pain can lead to significant mortality and morbidity. Pain may refer to the back from a number of organs situated in the retroperitoneum. Pancreatic pain in particular refers to the back and may be associated with pancreatic cancer and pancreatitis. Renal pain, which may be produced by stones in the renal collecting system or renal tumors, also typically refers to the back. More often than not this is usually unilateral; however, it can produce central posterior back pain. Enlarged lymph nodes in the pre- and para-aortic region may produce central posterior back pain and may be a sign of solid tumor malignancy, infection, or Hodgkin’s lymphoma. An enlarging abdominal aorta (abdominal aortic aneurysm) may cause back pain as it enlarges without rupture. Therefore it is critical to think of this structure as a potential cause of back pain, because treatment will be lifesaving. Moreover, a ruptured abdominal aortic aneurysm may also cause acute back pain in the first instance.

In all patients back pain requires careful assessment not only of the vertebral column but also of the chest and abdomen in order not to miss other important anatomical structures that may produce signs and symptoms radiating to the back.

Surface anatomy

Useful nonvertebral skeletal landmarks

A number of readily palpable bony features provide useful landmarks for defining muscles and for locating structures associated with the vertebral column. Among these features are the external occipital protuberance, the scapula, and the iliac crest (Fig. 2.58).

The external occipital protuberance is palpable in the midline at the back of the head just superior to the hairline.

The spine, medial border, and inferior angle of the scapula are often visible and are easily palpable.

The iliac crest is palpable along its entire length, from the anterior superior iliac spine at the lower lateral margin of the anterior abdominal wall to the posterior superior iliac spine near the base of the back. The position of the posterior superior iliac spine is often visible as a “sacral dimple” just lateral to the midline.

How to identify specific vertebral spinous processes

Identification of vertebral spinous processes (Fig. 2.59A) can be used to differentiate between regions of the vertebral column and facilitate visualizing the position of deeper structures, such as the inferior ends of the spinal cord and subarachnoid space.

The spinous process of vertebra CII can be identified through deep palpation as the most superior bony protuberance in the midline inferior to the skull.

Most of the other spinous processes, except for that of vertebra CVII, are not readily palpable because they are obscured by soft tissue.

The spinous process of CVII is usually visible as a prominent eminence in the midline at the base of the neck (Fig. 2.59B), particularly when the neck is flexed.

Extending between CVII and the external occipital protuberance of the skull is the ligamentum nuchae, which is readily apparent as a longitudinal ridge when the neck is flexed (Fig. 2.59C).

Inferior to the spinous process of CVII is the spinous process of TI, which is also usually visible as a midline protuberance. Often it is more prominent than the spinous process of CVII (Fig. 2.59A,B).

The root of the spine of the scapula is at the same level as the spinous process of vertebra TIII, and the inferior angle of the scapula is level with the spinous process of vertebra TVII (Fig. 2.59A).

The spinous process of vertebra TXII is level with the midpoint of a vertical line between the inferior angle of the scapula and the iliac crest (Fig. 2.59A).

A horizontal line between the highest point of the iliac crest on each side crosses through the spinous process of vertebra LIV. The LIII and LV vertebral spinous processes can be palpated above and below the LIV spinous process, respectively (Fig. 2.59A).

The sacral dimples that mark the position of the posterior superior iliac spine are level with the SII vertebral spinous process (Fig. 2.59A).

The tip of the coccyx is palpable at the base of the vertebral column between the gluteal masses (Fig. 2.59A).

The tips of the vertebral spinous processes do not always lie in the same horizontal plane as their corresponding vertebral bodies. In thoracic regions, the spinous processes are long and sharply sloped downward so that their tips lie at the level of the vertebral body below. In other words, the tip of the TIII vertebral spinous process lies at vertebral level TIV.

In lumbar and sacral regions, the spinous processes are generally shorter and less sloped than in thoracic regions, and their palpable tips more closely reflect the position of their corresponding vertebral bodies. As a consequence, the palpable end of the spinous process of vertebra LIV lies at approximately the LIV vertebral level.

Visualizing the inferior ends of the spinal cord and subarachnoid space

The spinal cord does not occupy the entire length of the vertebral canal. Normally in adults, it terminates at the level of the disc between vertebrae LI and LII; however, it may end as high as TXII or as low as the disc between vertebrae LII and LIII. The subarachnoid space ends at approximately the level of vertebra SII (Fig. 2.60A).

Because the subarachnoid space can be accessed in the lower lumbar region without endangering the spinal cord, it is important to be able to identify the position of the lumbar vertebral spinous processes. The LIV vertebral spinous process is level with a horizontal line between the highest points on the iliac crests. In the lumbar region, the palpable ends of the vertebral spinous processes lie opposite their corresponding vertebral bodies. The subarachnoid space can be accessed between vertebral levels LIII and LIV and between LIV and LV without endangering the spinal cord (Fig. 2.60B). The subarachnoid space ends at vertebral level SII, which is level with the sacral dimples marking the posterior superior iliac spines.

Clinical cases

Case 3

Psoas abscess

A 25-year-old woman complained of increasing lumbar back pain. Over the ensuing weeks she was noted to have an enlarging lump in the right groin, which was mildly tender to touch. On direct questioning, the patient also complained of a productive cough with sputum containing mucus and blood, and she had a mild temperature.

The chest radiograph revealed a cavitating apical lung mass, which explains the pulmonary history.

Given the age of the patient a primary lung cancer is unlikely. The hemoptysis (coughing up blood in the sputum) and the rest of the history suggest the patient has a lung infection. Given the chest radiographic findings of a cavity in the apex of the lung, a diagnosis of tuberculosis (TB) was made. This was confirmed by bronchoscopy and aspiration of pus, which was cultured.

During the patient’s pulmonary infection, the tuberculous bacillus had spread via the blood to vertebra LI. The bone destruction began in the cancellous bone of the vertebral body close to the intervertebral discs. This disease progressed and eroded into the intervertebral disc, which became infected. The disc was destroyed, and the infected disc material extruded around the disc anteriorly and passed into the psoas muscle sheath. This is not an uncommon finding for a tuberculous infection of the lumbar portion of the vertebral column.

As the infection progressed, the pus spread within the psoas muscle sheath beneath the inguinal ligament to produce a hard mass in the groin. This is a typical finding for a psoas abscess.

Fortunately for the patient, there was no evidence of any damage within the vertebral canal.

The patient underwent a radiologically guided drainage of the psoas abscess and was treated for over 6 months with a long-term antibiotic regimen. She made an excellent recovery with no further symptoms, although the cavities within the lungs remain. It healed with sclerosis.

Case 4

Dissecting thoracic aneurysm

A 72-year-old fit and healthy man was brought to the emergency department with severe back pain beginning at the level of the shoulder blades and extending to the midlumbar region. The pain was of relatively acute onset and was continuous. The patient was able to walk to the gurney as he entered the ambulance; however, at the emergency department the patient complained of inability to use both legs.

The attending physician examined the back thoroughly and found no significant abnormality. He noted that there was reduced sensation in both legs, and there was virtually no power in extensor or flexor groups. The patient was tachycardic, which was believed to be due to pain, and the blood pressure obtained in the ambulance measured 120/80 mm Hg. It was noted that the patient’s current blood pressure was 80/40 mm Hg; however, the patient did not complain of typical clinical symptoms of hypotension.

On first inspection, it is difficult to “add up” these clinical symptoms and signs. In essence we have a progressive paraplegia associated with severe back pain and an anomaly in blood pressure measurements, which are not compatible with the clinical state of the patient.

It was deduced that the blood pressure measurements were obtained in different arms, and both were reassessed.

The blood pressure measurements were true. In the right arm the blood pressure measured 120/80 mm Hg and in the left arm the blood pressure measured 80/40 mm Hg. This would imply a deficiency of blood to the left arm.

The patient was transferred from the emergency department to the CT scanner, and a scan was performed that included the chest, abdomen, and pelvis.

The CT scan demonstrated a dissecting thoracic aortic aneurysm. Aortic dissection occurs when the tunica intima and part of the tunica media of the wall of the aorta become separated from the remainder of the tunica media and the tunica adventitia of the aorta wall. This produces a false lumen. Blood passes not only in the true aortic lumen but also through a small hole into the wall of the aorta and into the false lumen. It often reenters the true aortic lumen inferiorly. This produces two channels through which blood may flow. The process of the aortic dissection produces considerable pain for the patient and is usually of rapid onset. Typically the pain is felt between the shoulder blades and radiating into the back, and although the pain is not from the back musculature or the vertebral column, careful consideration of structures other than the back should always be sought.

The difference in the blood pressure between the two arms indicates the level at which the dissection has begun. The “point of entry” is proximal to the left subclavian artery. At this level a small flap has been created, which limits the blood flow to the left upper limb, giving the low blood pressure recording. The brachiocephalic trunk has not been affected by the aortic dissection, and hence blood flow remains appropriate to the right upper limb.

The paraplegia was caused by ischemia to the spinal cord.

The blood supply to the spinal cord is from a single anterior spinal artery and two posterior spinal arteries. These arteries are fed via segmental spinal arteries at every vertebral level. There are a number of reinforcing arteries (segmental medullary arteries) along the length of the spinal cord—the largest of which is the artery of Adamkiewicz. This artery of Adamkiewicz, a segmental medullary artery, typically arises from the lower thoracic or upper lumbar region, and unfortunately during this patient’s aortic dissection, the origin of this vessel was disrupted. This produces acute spinal cord ischemia and has produced the paraplegia in the patient.

Unfortunately, the dissection extended, the aorta ruptured, and the patient succumbed.

Case 5

Sacral tumor

A 55-year-old woman came to her physician with sensory alteration in the right gluteal (buttock) region and in the intergluteal (natal) cleft. Examination also demonstrated low-grade weakness of the muscles of the foot and subtle weakness of the extensor hallucis longus, extensor digitorum longus, and fibularis tertius on the right. The patient also complained of some mild pain symptoms posteriorly in the right gluteal region.

A lesion was postulated in the left sacrum.

Pain in the right sacro-iliac region could easily be attributed to the sacro-iliac joint, which is often very sensitive to pain. The weakness of the intrinsic muscles of the foot and the extensor hallucis longus, extensor digitorum longus, and fibularis tertius muscles raises the possibility of an abnormality affecting the nerves exiting the sacrum and possibly the lumbosacral junction. The altered sensation around the gluteal region toward the anus would also support these anatomical localizing features.

An X-ray was obtained of the pelvis.

The X-ray appeared on first inspection unremarkable. However, the patient underwent further investigation, including CT and MRI, which demonstrated a large destructive lesion involving the whole of the left sacrum extending into the anterior sacral foramina at the S1, S2, and S3 levels. Interestingly, plain radiographs of the sacrum may often appear normal on first inspection, and further imaging should always be sought in patients with a suspected sacral abnormality.

The lesion was expansile and lytic.

Most bony metastases are typically nonexpansile. They may well erode the bone, producing lytic type of lesions, or may become very sclerotic (prostate metastases and breast metastases). From time to time we see a mixed pattern of lytic and sclerotic.

There are a number of uncommon instances in which certain metastases are expansile and lytic. These typically occur in renal metastases and may be seen in multiple myeloma. The anatomical importance of these specific tumors is that they often expand and impinge upon other structures. The expansile nature of this patient’s tumor within the sacrum was the cause for compression of the sacral nerve roots, producing her symptoms.

The patient underwent a course of radiotherapy, had the renal tumor excised, and is currently undergoing a course of chemoimmunotherapy.