26: Pulmonary Artery Catheterization

Published on 06/02/2015 by admin

Filed under Anesthesiology

Last modified 22/04/2025

Print this page

rate 1 star rate 2 star rate 3 star rate 4 star rate 5 star
Your rating: none, Average: 0 (0 votes)

This article have been viewed 1516 times

15 Pulmonary artery catheter pressures are surrogate measures for what important physiologic variables? What assumptions are made about the variables obtained through pulmonary artery catheterization?

Numerous assumptions are made to try to estimate the most important information, left ventricular end-diastolic volume (LVEDV). First, we are using pressures to estimate volume. Second, although we can measure pulmonary artery systolic, diastolic, and occlusion pressures, we are using these measures to estimate left atrial pressure (LAP) and left ventricular end-diastolic pressure (LVEDP). PA diastolic pressure in the healthy heart is a reliable estimate of PAOP, LAP, and LVEDP. However, clearly these relationships fall apart in the presence of cardiac and lung disease. LVEDP is dependent not only on volume but also on ventricular compliance, which can be decreased by ischemia, ventricular hypertrophy and dilation, septal shifts, aortic stenosis, pericardial effusions, use of inotropic agents, and hypertension; in these situations LAP poorly estimates LVEDP. In this instance estimating LVEDP by measuring the a wave of the PAOP is best. LAP may be higher than LVEDP in the presence of mitral regurgitation, as evidenced by a large v wave on the PAOP waveform (Figure 26-6). Increased pulmonary vascular resistance, present in chronic obstructive pulmonary disease, pulmonary embolic disease, acute respiratory failure, hypoxia, and hypercarbia, also decreases the correlation between PA diastolic and occlusion pressures.

17 How might catheter position within the lung lead to errors in interpreting left atrial pressure catheter data?

The zones of West, as described in Chapter 2, describe the pressure relationship between pulmonary arterial, pulmonary venous, and alveolar pressure in different anatomic areas of the lung. The zones can change as a patient’s position and intravascular volume status changes. Mechanical ventilation and PEEP also change the zones. Usually a PA catheter will float into zone 3 and in fact must do so to accurately reflect left atrial pressure because only in zone 3 is there a constant fluid column between the pulmonary artery and left atrium. However, it should be noted that, once the catheter is inserted, the patient’s volume and ventilatory status may change remarkably, and the catheter tip may no longer be in a suitable position for correct interpretation (the catheter didn’t wander—the patient’s physiology wandered!).